959 lines
39 KiB
C++
959 lines
39 KiB
C++
// Copyright 2018 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#ifndef INCLUDE_V8_INTERNAL_H_
|
|
#define INCLUDE_V8_INTERNAL_H_
|
|
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include <atomic>
|
|
#include <type_traits>
|
|
|
|
#include "v8-version.h" // NOLINT(build/include_directory)
|
|
#include "v8config.h" // NOLINT(build/include_directory)
|
|
|
|
namespace v8 {
|
|
|
|
class Array;
|
|
class Context;
|
|
class Data;
|
|
class Isolate;
|
|
|
|
namespace internal {
|
|
|
|
class Isolate;
|
|
|
|
typedef uintptr_t Address;
|
|
static constexpr Address kNullAddress = 0;
|
|
|
|
constexpr int KB = 1024;
|
|
constexpr int MB = KB * 1024;
|
|
constexpr int GB = MB * 1024;
|
|
#ifdef V8_TARGET_ARCH_X64
|
|
constexpr size_t TB = size_t{GB} * 1024;
|
|
#endif
|
|
|
|
/**
|
|
* Configuration of tagging scheme.
|
|
*/
|
|
const int kApiSystemPointerSize = sizeof(void*);
|
|
const int kApiDoubleSize = sizeof(double);
|
|
const int kApiInt32Size = sizeof(int32_t);
|
|
const int kApiInt64Size = sizeof(int64_t);
|
|
const int kApiSizetSize = sizeof(size_t);
|
|
|
|
// Tag information for HeapObject.
|
|
const int kHeapObjectTag = 1;
|
|
const int kWeakHeapObjectTag = 3;
|
|
const int kHeapObjectTagSize = 2;
|
|
const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1;
|
|
const intptr_t kHeapObjectReferenceTagMask = 1 << (kHeapObjectTagSize - 1);
|
|
|
|
// Tag information for fowarding pointers stored in object headers.
|
|
// 0b00 at the lowest 2 bits in the header indicates that the map word is a
|
|
// forwarding pointer.
|
|
const int kForwardingTag = 0;
|
|
const int kForwardingTagSize = 2;
|
|
const intptr_t kForwardingTagMask = (1 << kForwardingTagSize) - 1;
|
|
|
|
// Tag information for Smi.
|
|
const int kSmiTag = 0;
|
|
const int kSmiTagSize = 1;
|
|
const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1;
|
|
|
|
template <size_t tagged_ptr_size>
|
|
struct SmiTagging;
|
|
|
|
constexpr intptr_t kIntptrAllBitsSet = intptr_t{-1};
|
|
constexpr uintptr_t kUintptrAllBitsSet =
|
|
static_cast<uintptr_t>(kIntptrAllBitsSet);
|
|
|
|
// Smi constants for systems where tagged pointer is a 32-bit value.
|
|
template <>
|
|
struct SmiTagging<4> {
|
|
enum { kSmiShiftSize = 0, kSmiValueSize = 31 };
|
|
|
|
static constexpr intptr_t kSmiMinValue =
|
|
static_cast<intptr_t>(kUintptrAllBitsSet << (kSmiValueSize - 1));
|
|
static constexpr intptr_t kSmiMaxValue = -(kSmiMinValue + 1);
|
|
|
|
V8_INLINE static int SmiToInt(Address value) {
|
|
int shift_bits = kSmiTagSize + kSmiShiftSize;
|
|
// Truncate and shift down (requires >> to be sign extending).
|
|
return static_cast<int32_t>(static_cast<uint32_t>(value)) >> shift_bits;
|
|
}
|
|
V8_INLINE static constexpr bool IsValidSmi(intptr_t value) {
|
|
// Is value in range [kSmiMinValue, kSmiMaxValue].
|
|
// Use unsigned operations in order to avoid undefined behaviour in case of
|
|
// signed integer overflow.
|
|
return (static_cast<uintptr_t>(value) -
|
|
static_cast<uintptr_t>(kSmiMinValue)) <=
|
|
(static_cast<uintptr_t>(kSmiMaxValue) -
|
|
static_cast<uintptr_t>(kSmiMinValue));
|
|
}
|
|
};
|
|
|
|
// Smi constants for systems where tagged pointer is a 64-bit value.
|
|
template <>
|
|
struct SmiTagging<8> {
|
|
enum { kSmiShiftSize = 31, kSmiValueSize = 32 };
|
|
|
|
static constexpr intptr_t kSmiMinValue =
|
|
static_cast<intptr_t>(kUintptrAllBitsSet << (kSmiValueSize - 1));
|
|
static constexpr intptr_t kSmiMaxValue = -(kSmiMinValue + 1);
|
|
|
|
V8_INLINE static int SmiToInt(Address value) {
|
|
int shift_bits = kSmiTagSize + kSmiShiftSize;
|
|
// Shift down and throw away top 32 bits.
|
|
return static_cast<int>(static_cast<intptr_t>(value) >> shift_bits);
|
|
}
|
|
V8_INLINE static constexpr bool IsValidSmi(intptr_t value) {
|
|
// To be representable as a long smi, the value must be a 32-bit integer.
|
|
return (value == static_cast<int32_t>(value));
|
|
}
|
|
};
|
|
|
|
#ifdef V8_COMPRESS_POINTERS
|
|
// See v8:7703 or src/common/ptr-compr-inl.h for details about pointer
|
|
// compression.
|
|
constexpr size_t kPtrComprCageReservationSize = size_t{1} << 32;
|
|
constexpr size_t kPtrComprCageBaseAlignment = size_t{1} << 32;
|
|
|
|
static_assert(
|
|
kApiSystemPointerSize == kApiInt64Size,
|
|
"Pointer compression can be enabled only for 64-bit architectures");
|
|
const int kApiTaggedSize = kApiInt32Size;
|
|
#else
|
|
const int kApiTaggedSize = kApiSystemPointerSize;
|
|
#endif
|
|
|
|
constexpr bool PointerCompressionIsEnabled() {
|
|
return kApiTaggedSize != kApiSystemPointerSize;
|
|
}
|
|
|
|
#ifdef V8_31BIT_SMIS_ON_64BIT_ARCH
|
|
using PlatformSmiTagging = SmiTagging<kApiInt32Size>;
|
|
#else
|
|
using PlatformSmiTagging = SmiTagging<kApiTaggedSize>;
|
|
#endif
|
|
|
|
// TODO(ishell): Consinder adding kSmiShiftBits = kSmiShiftSize + kSmiTagSize
|
|
// since it's used much more often than the inividual constants.
|
|
const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize;
|
|
const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize;
|
|
const int kSmiMinValue = static_cast<int>(PlatformSmiTagging::kSmiMinValue);
|
|
const int kSmiMaxValue = static_cast<int>(PlatformSmiTagging::kSmiMaxValue);
|
|
constexpr bool SmiValuesAre31Bits() { return kSmiValueSize == 31; }
|
|
constexpr bool SmiValuesAre32Bits() { return kSmiValueSize == 32; }
|
|
constexpr bool Is64() { return kApiSystemPointerSize == sizeof(int64_t); }
|
|
|
|
V8_INLINE static constexpr Address IntToSmi(int value) {
|
|
return (static_cast<Address>(value) << (kSmiTagSize + kSmiShiftSize)) |
|
|
kSmiTag;
|
|
}
|
|
|
|
/*
|
|
* Sandbox related types, constants, and functions.
|
|
*/
|
|
constexpr bool SandboxIsEnabled() {
|
|
#ifdef V8_ENABLE_SANDBOX
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
// SandboxedPointers are guaranteed to point into the sandbox. This is achieved
|
|
// for example by storing them as offset rather than as raw pointers.
|
|
using SandboxedPointer_t = Address;
|
|
|
|
#ifdef V8_ENABLE_SANDBOX
|
|
|
|
// Size of the sandbox, excluding the guard regions surrounding it.
|
|
#ifdef V8_TARGET_OS_ANDROID
|
|
// On Android, most 64-bit devices seem to be configured with only 39 bits of
|
|
// virtual address space for userspace. As such, limit the sandbox to 128GB (a
|
|
// quarter of the total available address space).
|
|
constexpr size_t kSandboxSizeLog2 = 37; // 128 GB
|
|
#else
|
|
// Everywhere else use a 1TB sandbox.
|
|
constexpr size_t kSandboxSizeLog2 = 40; // 1 TB
|
|
#endif // V8_TARGET_OS_ANDROID
|
|
constexpr size_t kSandboxSize = 1ULL << kSandboxSizeLog2;
|
|
|
|
// Required alignment of the sandbox. For simplicity, we require the
|
|
// size of the guard regions to be a multiple of this, so that this specifies
|
|
// the alignment of the sandbox including and excluding surrounding guard
|
|
// regions. The alignment requirement is due to the pointer compression cage
|
|
// being located at the start of the sandbox.
|
|
constexpr size_t kSandboxAlignment = kPtrComprCageBaseAlignment;
|
|
|
|
// Sandboxed pointers are stored inside the heap as offset from the sandbox
|
|
// base shifted to the left. This way, it is guaranteed that the offset is
|
|
// smaller than the sandbox size after shifting it to the right again. This
|
|
// constant specifies the shift amount.
|
|
constexpr uint64_t kSandboxedPointerShift = 64 - kSandboxSizeLog2;
|
|
|
|
// Size of the guard regions surrounding the sandbox. This assumes a worst-case
|
|
// scenario of a 32-bit unsigned index used to access an array of 64-bit
|
|
// values.
|
|
constexpr size_t kSandboxGuardRegionSize = 32ULL * GB;
|
|
|
|
static_assert((kSandboxGuardRegionSize % kSandboxAlignment) == 0,
|
|
"The size of the guard regions around the sandbox must be a "
|
|
"multiple of its required alignment.");
|
|
|
|
// On OSes where reserving virtual memory is too expensive to reserve the
|
|
// entire address space backing the sandbox, notably Windows pre 8.1, we create
|
|
// a partially reserved sandbox that doesn't actually reserve most of the
|
|
// memory, and so doesn't have the desired security properties as unrelated
|
|
// memory allocations could end up inside of it, but which still ensures that
|
|
// objects that should be located inside the sandbox are allocated within
|
|
// kSandboxSize bytes from the start of the sandbox. The minimum size of the
|
|
// region that is actually reserved for such a sandbox is specified by this
|
|
// constant and should be big enough to contain the pointer compression cage as
|
|
// well as the ArrayBuffer partition.
|
|
constexpr size_t kSandboxMinimumReservationSize = 8ULL * GB;
|
|
|
|
static_assert(kSandboxMinimumReservationSize > kPtrComprCageReservationSize,
|
|
"The minimum reservation size for a sandbox must be larger than "
|
|
"the pointer compression cage contained within it.");
|
|
|
|
// The maximum buffer size allowed inside the sandbox. This is mostly dependent
|
|
// on the size of the guard regions around the sandbox: an attacker must not be
|
|
// able to construct a buffer that appears larger than the guard regions and
|
|
// thereby "reach out of" the sandbox.
|
|
constexpr size_t kMaxSafeBufferSizeForSandbox = 32ULL * GB - 1;
|
|
static_assert(kMaxSafeBufferSizeForSandbox <= kSandboxGuardRegionSize,
|
|
"The maximum allowed buffer size must not be larger than the "
|
|
"sandbox's guard regions");
|
|
|
|
constexpr size_t kBoundedSizeShift = 29;
|
|
static_assert(1ULL << (64 - kBoundedSizeShift) ==
|
|
kMaxSafeBufferSizeForSandbox + 1,
|
|
"The maximum size of a BoundedSize must be synchronized with the "
|
|
"kMaxSafeBufferSizeForSandbox");
|
|
|
|
#endif // V8_ENABLE_SANDBOX
|
|
|
|
#ifdef V8_COMPRESS_POINTERS
|
|
|
|
#ifdef V8_TARGET_OS_ANDROID
|
|
// The size of the virtual memory reservation for an external pointer table.
|
|
// This determines the maximum number of entries in a table. Using a maximum
|
|
// size allows omitting bounds checks on table accesses if the indices are
|
|
// guaranteed (e.g. through shifting) to be below the maximum index. This
|
|
// value must be a power of two.
|
|
static const size_t kExternalPointerTableReservationSize = 512 * MB;
|
|
|
|
// The external pointer table indices stored in HeapObjects as external
|
|
// pointers are shifted to the left by this amount to guarantee that they are
|
|
// smaller than the maximum table size.
|
|
static const uint32_t kExternalPointerIndexShift = 6;
|
|
#else
|
|
static const size_t kExternalPointerTableReservationSize = 1024 * MB;
|
|
static const uint32_t kExternalPointerIndexShift = 5;
|
|
#endif // V8_TARGET_OS_ANDROID
|
|
|
|
// The maximum number of entries in an external pointer table.
|
|
static const size_t kMaxExternalPointers =
|
|
kExternalPointerTableReservationSize / kApiSystemPointerSize;
|
|
static_assert((1 << (32 - kExternalPointerIndexShift)) == kMaxExternalPointers,
|
|
"kExternalPointerTableReservationSize and "
|
|
"kExternalPointerIndexShift don't match");
|
|
|
|
#else // !V8_COMPRESS_POINTERS
|
|
|
|
// Needed for the V8.SandboxedExternalPointersCount histogram.
|
|
static const size_t kMaxExternalPointers = 0;
|
|
|
|
#endif // V8_COMPRESS_POINTERS
|
|
|
|
// A ExternalPointerHandle represents a (opaque) reference to an external
|
|
// pointer that can be stored inside the sandbox. A ExternalPointerHandle has
|
|
// meaning only in combination with an (active) Isolate as it references an
|
|
// external pointer stored in the currently active Isolate's
|
|
// ExternalPointerTable. Internally, an ExternalPointerHandles is simply an
|
|
// index into an ExternalPointerTable that is shifted to the left to guarantee
|
|
// that it is smaller than the size of the table.
|
|
using ExternalPointerHandle = uint32_t;
|
|
|
|
// ExternalPointers point to objects located outside the sandbox. When
|
|
// sandboxed external pointers are enabled, these are stored on heap as
|
|
// ExternalPointerHandles, otherwise they are simply raw pointers.
|
|
#ifdef V8_ENABLE_SANDBOX
|
|
using ExternalPointer_t = ExternalPointerHandle;
|
|
#else
|
|
using ExternalPointer_t = Address;
|
|
#endif
|
|
|
|
// When the sandbox is enabled, external pointers are stored in an external
|
|
// pointer table and are referenced from HeapObjects through an index (a
|
|
// "handle"). When stored in the table, the pointers are tagged with per-type
|
|
// tags to prevent type confusion attacks between different external objects.
|
|
// Besides type information bits, these tags also contain the GC marking bit
|
|
// which indicates whether the pointer table entry is currently alive. When a
|
|
// pointer is written into the table, the tag is ORed into the top bits. When
|
|
// that pointer is later loaded from the table, it is ANDed with the inverse of
|
|
// the expected tag. If the expected and actual type differ, this will leave
|
|
// some of the top bits of the pointer set, rendering the pointer inaccessible.
|
|
// The AND operation also removes the GC marking bit from the pointer.
|
|
//
|
|
// The tags are constructed such that UNTAG(TAG(0, T1), T2) != 0 for any two
|
|
// (distinct) tags T1 and T2. In practice, this is achieved by generating tags
|
|
// that all have the same number of zeroes and ones but different bit patterns.
|
|
// With N type tag bits, this allows for (N choose N/2) possible type tags.
|
|
// Besides the type tag bits, the tags also have the GC marking bit set so that
|
|
// the marking bit is automatically set when a pointer is written into the
|
|
// external pointer table (in which case it is clearly alive) and is cleared
|
|
// when the pointer is loaded. The exception to this is the free entry tag,
|
|
// which doesn't have the mark bit set, as the entry is not alive. This
|
|
// construction allows performing the type check and removing GC marking bits
|
|
// from the pointer in one efficient operation (bitwise AND). The number of
|
|
// available bits is limited in the following way: on x64, bits [47, 64) are
|
|
// generally available for tagging (userspace has 47 address bits available).
|
|
// On Arm64, userspace typically has a 40 or 48 bit address space. However, due
|
|
// to top-byte ignore (TBI) and memory tagging (MTE), the top byte is unusable
|
|
// for type checks as type-check failures would go unnoticed or collide with
|
|
// MTE bits. Some bits of the top byte can, however, still be used for the GC
|
|
// marking bit. The bits available for the type tags are therefore limited to
|
|
// [48, 56), i.e. (8 choose 4) = 70 different types.
|
|
// The following options exist to increase the number of possible types:
|
|
// - Using multiple ExternalPointerTables since tags can safely be reused
|
|
// across different tables
|
|
// - Using "extended" type checks, where additional type information is stored
|
|
// either in an adjacent pointer table entry or at the pointed-to location
|
|
// - Using a different tagging scheme, for example based on XOR which would
|
|
// allow for 2**8 different tags but require a separate operation to remove
|
|
// the marking bit
|
|
//
|
|
// The external pointer sandboxing mechanism ensures that every access to an
|
|
// external pointer field will result in a valid pointer of the expected type
|
|
// even in the presence of an attacker able to corrupt memory inside the
|
|
// sandbox. However, if any data related to the external object is stored
|
|
// inside the sandbox it may still be corrupted and so must be validated before
|
|
// use or moved into the external object. Further, an attacker will always be
|
|
// able to substitute different external pointers of the same type for each
|
|
// other. Therefore, code using external pointers must be written in a
|
|
// "substitution-safe" way, i.e. it must always be possible to substitute
|
|
// external pointers of the same type without causing memory corruption outside
|
|
// of the sandbox. Generally this is achieved by referencing any group of
|
|
// related external objects through a single external pointer.
|
|
//
|
|
// Currently we use bit 62 for the marking bit which should always be unused as
|
|
// it's part of the non-canonical address range. When Arm's top-byte ignore
|
|
// (TBI) is enabled, this bit will be part of the ignored byte, and we assume
|
|
// that the Embedder is not using this byte (really only this one bit) for any
|
|
// other purpose. This bit also does not collide with the memory tagging
|
|
// extension (MTE) which would use bits [56, 60).
|
|
//
|
|
// External pointer tables are also available even when the sandbox is off but
|
|
// pointer compression is on. In that case, the mechanism can be used to easy
|
|
// alignment requirements as it turns unaligned 64-bit raw pointers into
|
|
// aligned 32-bit indices. To "opt-in" to the external pointer table mechanism
|
|
// for this purpose, instead of using the ExternalPointer accessors one needs to
|
|
// use ExternalPointerHandles directly and use them to access the pointers in an
|
|
// ExternalPointerTable.
|
|
constexpr uint64_t kExternalPointerMarkBit = 1ULL << 62;
|
|
constexpr uint64_t kExternalPointerTagMask = 0x40ff000000000000;
|
|
constexpr uint64_t kExternalPointerTagShift = 48;
|
|
|
|
// All possible 8-bit type tags.
|
|
// These are sorted so that tags can be grouped together and it can efficiently
|
|
// be checked if a tag belongs to a given group. See for example the
|
|
// IsSharedExternalPointerType routine.
|
|
constexpr uint64_t kAllExternalPointerTypeTags[] = {
|
|
0b00001111, 0b00010111, 0b00011011, 0b00011101, 0b00011110, 0b00100111,
|
|
0b00101011, 0b00101101, 0b00101110, 0b00110011, 0b00110101, 0b00110110,
|
|
0b00111001, 0b00111010, 0b00111100, 0b01000111, 0b01001011, 0b01001101,
|
|
0b01001110, 0b01010011, 0b01010101, 0b01010110, 0b01011001, 0b01011010,
|
|
0b01011100, 0b01100011, 0b01100101, 0b01100110, 0b01101001, 0b01101010,
|
|
0b01101100, 0b01110001, 0b01110010, 0b01110100, 0b01111000, 0b10000111,
|
|
0b10001011, 0b10001101, 0b10001110, 0b10010011, 0b10010101, 0b10010110,
|
|
0b10011001, 0b10011010, 0b10011100, 0b10100011, 0b10100101, 0b10100110,
|
|
0b10101001, 0b10101010, 0b10101100, 0b10110001, 0b10110010, 0b10110100,
|
|
0b10111000, 0b11000011, 0b11000101, 0b11000110, 0b11001001, 0b11001010,
|
|
0b11001100, 0b11010001, 0b11010010, 0b11010100, 0b11011000, 0b11100001,
|
|
0b11100010, 0b11100100, 0b11101000, 0b11110000};
|
|
|
|
#define TAG(i) \
|
|
((kAllExternalPointerTypeTags[i] << kExternalPointerTagShift) | \
|
|
kExternalPointerMarkBit)
|
|
|
|
// clang-format off
|
|
|
|
// When adding new tags, please ensure that the code using these tags is
|
|
// "substitution-safe", i.e. still operate safely if external pointers of the
|
|
// same type are swapped by an attacker. See comment above for more details.
|
|
|
|
// Shared external pointers are owned by the shared Isolate and stored in the
|
|
// shared external pointer table associated with that Isolate, where they can
|
|
// be accessed from multiple threads at the same time. The objects referenced
|
|
// in this way must therefore always be thread-safe.
|
|
#define SHARED_EXTERNAL_POINTER_TAGS(V) \
|
|
V(kFirstSharedTag, TAG(0)) \
|
|
V(kWaiterQueueNodeTag, TAG(0)) \
|
|
V(kExternalStringResourceTag, TAG(1)) \
|
|
V(kExternalStringResourceDataTag, TAG(2)) \
|
|
V(kLastSharedTag, TAG(2))
|
|
|
|
// External pointers using these tags are kept in a per-Isolate external
|
|
// pointer table and can only be accessed when this Isolate is active.
|
|
#define PER_ISOLATE_EXTERNAL_POINTER_TAGS(V) \
|
|
V(kForeignForeignAddressTag, TAG(10)) \
|
|
V(kNativeContextMicrotaskQueueTag, TAG(11)) \
|
|
V(kEmbedderDataSlotPayloadTag, TAG(12)) \
|
|
/* This tag essentially stands for a `void*` pointer in the V8 API, and */ \
|
|
/* it is the Embedder's responsibility to ensure type safety (against */ \
|
|
/* substitution) and lifetime validity of these objects. */ \
|
|
V(kExternalObjectValueTag, TAG(13)) \
|
|
V(kCallHandlerInfoCallbackTag, TAG(14)) \
|
|
V(kAccessorInfoGetterTag, TAG(15)) \
|
|
V(kAccessorInfoSetterTag, TAG(16)) \
|
|
V(kWasmInternalFunctionCallTargetTag, TAG(17)) \
|
|
V(kWasmTypeInfoNativeTypeTag, TAG(18)) \
|
|
V(kWasmExportedFunctionDataSignatureTag, TAG(19)) \
|
|
V(kWasmContinuationJmpbufTag, TAG(20)) \
|
|
V(kArrayBufferExtensionTag, TAG(21))
|
|
|
|
// All external pointer tags.
|
|
#define ALL_EXTERNAL_POINTER_TAGS(V) \
|
|
SHARED_EXTERNAL_POINTER_TAGS(V) \
|
|
PER_ISOLATE_EXTERNAL_POINTER_TAGS(V)
|
|
|
|
#define EXTERNAL_POINTER_TAG_ENUM(Name, Tag) Name = Tag,
|
|
#define MAKE_TAG(HasMarkBit, TypeTag) \
|
|
((static_cast<uint64_t>(TypeTag) << kExternalPointerTagShift) | \
|
|
(HasMarkBit ? kExternalPointerMarkBit : 0))
|
|
enum ExternalPointerTag : uint64_t {
|
|
// Empty tag value. Mostly used as placeholder.
|
|
kExternalPointerNullTag = MAKE_TAG(0, 0b00000000),
|
|
// External pointer tag that will match any external pointer. Use with care!
|
|
kAnyExternalPointerTag = MAKE_TAG(1, 0b11111111),
|
|
// The free entry tag has all type bits set so every type check with a
|
|
// different type fails. It also doesn't have the mark bit set as free
|
|
// entries are (by definition) not alive.
|
|
kExternalPointerFreeEntryTag = MAKE_TAG(0, 0b11111111),
|
|
// Evacuation entries are used during external pointer table compaction.
|
|
kExternalPointerEvacuationEntryTag = MAKE_TAG(1, 0b11100111),
|
|
|
|
ALL_EXTERNAL_POINTER_TAGS(EXTERNAL_POINTER_TAG_ENUM)
|
|
};
|
|
|
|
#undef MAKE_TAG
|
|
#undef TAG
|
|
#undef EXTERNAL_POINTER_TAG_ENUM
|
|
|
|
// clang-format on
|
|
|
|
// True if the external pointer must be accessed from the shared isolate's
|
|
// external pointer table.
|
|
V8_INLINE static constexpr bool IsSharedExternalPointerType(
|
|
ExternalPointerTag tag) {
|
|
return tag >= kFirstSharedTag && tag <= kLastSharedTag;
|
|
}
|
|
|
|
// Sanity checks.
|
|
#define CHECK_SHARED_EXTERNAL_POINTER_TAGS(Tag, ...) \
|
|
static_assert(IsSharedExternalPointerType(Tag));
|
|
#define CHECK_NON_SHARED_EXTERNAL_POINTER_TAGS(Tag, ...) \
|
|
static_assert(!IsSharedExternalPointerType(Tag));
|
|
|
|
SHARED_EXTERNAL_POINTER_TAGS(CHECK_SHARED_EXTERNAL_POINTER_TAGS)
|
|
PER_ISOLATE_EXTERNAL_POINTER_TAGS(CHECK_NON_SHARED_EXTERNAL_POINTER_TAGS)
|
|
|
|
#undef CHECK_NON_SHARED_EXTERNAL_POINTER_TAGS
|
|
#undef CHECK_SHARED_EXTERNAL_POINTER_TAGS
|
|
|
|
#undef SHARED_EXTERNAL_POINTER_TAGS
|
|
#undef EXTERNAL_POINTER_TAGS
|
|
|
|
// {obj} must be the raw tagged pointer representation of a HeapObject
|
|
// that's guaranteed to never be in ReadOnlySpace.
|
|
V8_EXPORT internal::Isolate* IsolateFromNeverReadOnlySpaceObject(Address obj);
|
|
|
|
// Returns if we need to throw when an error occurs. This infers the language
|
|
// mode based on the current context and the closure. This returns true if the
|
|
// language mode is strict.
|
|
V8_EXPORT bool ShouldThrowOnError(internal::Isolate* isolate);
|
|
/**
|
|
* This class exports constants and functionality from within v8 that
|
|
* is necessary to implement inline functions in the v8 api. Don't
|
|
* depend on functions and constants defined here.
|
|
*/
|
|
class Internals {
|
|
#ifdef V8_MAP_PACKING
|
|
V8_INLINE static constexpr Address UnpackMapWord(Address mapword) {
|
|
// TODO(wenyuzhao): Clear header metadata.
|
|
return mapword ^ kMapWordXorMask;
|
|
}
|
|
#endif
|
|
|
|
public:
|
|
// These values match non-compiler-dependent values defined within
|
|
// the implementation of v8.
|
|
static const int kHeapObjectMapOffset = 0;
|
|
static const int kMapInstanceTypeOffset = 1 * kApiTaggedSize + kApiInt32Size;
|
|
static const int kStringResourceOffset =
|
|
1 * kApiTaggedSize + 2 * kApiInt32Size;
|
|
|
|
static const int kOddballKindOffset = 4 * kApiTaggedSize + kApiDoubleSize;
|
|
static const int kJSObjectHeaderSize = 3 * kApiTaggedSize;
|
|
static const int kFixedArrayHeaderSize = 2 * kApiTaggedSize;
|
|
static const int kEmbedderDataArrayHeaderSize = 2 * kApiTaggedSize;
|
|
static const int kEmbedderDataSlotSize = kApiSystemPointerSize;
|
|
#ifdef V8_ENABLE_SANDBOX
|
|
static const int kEmbedderDataSlotExternalPointerOffset = kApiTaggedSize;
|
|
#else
|
|
static const int kEmbedderDataSlotExternalPointerOffset = 0;
|
|
#endif
|
|
static const int kNativeContextEmbedderDataOffset = 6 * kApiTaggedSize;
|
|
static const int kStringRepresentationAndEncodingMask = 0x0f;
|
|
static const int kStringEncodingMask = 0x8;
|
|
static const int kExternalTwoByteRepresentationTag = 0x02;
|
|
static const int kExternalOneByteRepresentationTag = 0x0a;
|
|
|
|
static const uint32_t kNumIsolateDataSlots = 4;
|
|
static const int kStackGuardSize = 7 * kApiSystemPointerSize;
|
|
static const int kBuiltinTier0EntryTableSize = 7 * kApiSystemPointerSize;
|
|
static const int kBuiltinTier0TableSize = 7 * kApiSystemPointerSize;
|
|
static const int kLinearAllocationAreaSize = 3 * kApiSystemPointerSize;
|
|
static const int kThreadLocalTopSize = 25 * kApiSystemPointerSize;
|
|
|
|
// ExternalPointerTable layout guarantees.
|
|
static const int kExternalPointerTableBufferOffset = 0;
|
|
static const int kExternalPointerTableSize = 4 * kApiSystemPointerSize;
|
|
|
|
// IsolateData layout guarantees.
|
|
static const int kIsolateCageBaseOffset = 0;
|
|
static const int kIsolateStackGuardOffset =
|
|
kIsolateCageBaseOffset + kApiSystemPointerSize;
|
|
static const int kVariousBooleanFlagsOffset =
|
|
kIsolateStackGuardOffset + kStackGuardSize;
|
|
static const int kBuiltinTier0EntryTableOffset =
|
|
kVariousBooleanFlagsOffset + 8;
|
|
static const int kBuiltinTier0TableOffset =
|
|
kBuiltinTier0EntryTableOffset + kBuiltinTier0EntryTableSize;
|
|
static const int kNewAllocationInfoOffset =
|
|
kBuiltinTier0TableOffset + kBuiltinTier0TableSize;
|
|
static const int kOldAllocationInfoOffset =
|
|
kNewAllocationInfoOffset + kLinearAllocationAreaSize;
|
|
static const int kIsolateFastCCallCallerFpOffset =
|
|
kOldAllocationInfoOffset + kLinearAllocationAreaSize;
|
|
static const int kIsolateFastCCallCallerPcOffset =
|
|
kIsolateFastCCallCallerFpOffset + kApiSystemPointerSize;
|
|
static const int kIsolateFastApiCallTargetOffset =
|
|
kIsolateFastCCallCallerPcOffset + kApiSystemPointerSize;
|
|
static const int kIsolateLongTaskStatsCounterOffset =
|
|
kIsolateFastApiCallTargetOffset + kApiSystemPointerSize;
|
|
static const int kIsolateThreadLocalTopOffset =
|
|
kIsolateLongTaskStatsCounterOffset + kApiSizetSize;
|
|
static const int kIsolateEmbedderDataOffset =
|
|
kIsolateThreadLocalTopOffset + kThreadLocalTopSize;
|
|
#ifdef V8_COMPRESS_POINTERS
|
|
static const int kIsolateExternalPointerTableOffset =
|
|
kIsolateEmbedderDataOffset + kNumIsolateDataSlots * kApiSystemPointerSize;
|
|
static const int kIsolateSharedExternalPointerTableAddressOffset =
|
|
kIsolateExternalPointerTableOffset + kExternalPointerTableSize;
|
|
static const int kIsolateRootsOffset =
|
|
kIsolateSharedExternalPointerTableAddressOffset + kApiSystemPointerSize;
|
|
#else
|
|
static const int kIsolateRootsOffset =
|
|
kIsolateEmbedderDataOffset + kNumIsolateDataSlots * kApiSystemPointerSize;
|
|
#endif
|
|
|
|
#if V8_STATIC_ROOTS_BOOL
|
|
|
|
// These constants need to be initialized in api.cc.
|
|
#define EXPORTED_STATIC_ROOTS_PTR_LIST(V) \
|
|
V(UndefinedValue) \
|
|
V(NullValue) \
|
|
V(TrueValue) \
|
|
V(FalseValue) \
|
|
V(EmptyString) \
|
|
V(TheHoleValue)
|
|
|
|
using Tagged_t = uint32_t;
|
|
struct StaticReadOnlyRoot {
|
|
#define DEF_ROOT(name) V8_EXPORT static const Tagged_t k##name;
|
|
EXPORTED_STATIC_ROOTS_PTR_LIST(DEF_ROOT)
|
|
#undef DEF_ROOT
|
|
|
|
V8_EXPORT static const Tagged_t kFirstStringMap;
|
|
V8_EXPORT static const Tagged_t kLastStringMap;
|
|
};
|
|
|
|
#endif // V8_STATIC_ROOTS_BOOL
|
|
|
|
static const int kUndefinedValueRootIndex = 4;
|
|
static const int kTheHoleValueRootIndex = 5;
|
|
static const int kNullValueRootIndex = 6;
|
|
static const int kTrueValueRootIndex = 7;
|
|
static const int kFalseValueRootIndex = 8;
|
|
static const int kEmptyStringRootIndex = 9;
|
|
|
|
static const int kNodeClassIdOffset = 1 * kApiSystemPointerSize;
|
|
static const int kNodeFlagsOffset = 1 * kApiSystemPointerSize + 3;
|
|
static const int kNodeStateMask = 0x3;
|
|
static const int kNodeStateIsWeakValue = 2;
|
|
|
|
static const int kTracedNodeClassIdOffset = kApiSystemPointerSize;
|
|
|
|
static const int kFirstNonstringType = 0x80;
|
|
static const int kOddballType = 0x83;
|
|
static const int kForeignType = 0xcc;
|
|
static const int kJSSpecialApiObjectType = 0x410;
|
|
static const int kJSObjectType = 0x421;
|
|
static const int kFirstJSApiObjectType = 0x422;
|
|
static const int kLastJSApiObjectType = 0x80A;
|
|
|
|
static const int kUndefinedOddballKind = 5;
|
|
static const int kNullOddballKind = 3;
|
|
|
|
// Constants used by PropertyCallbackInfo to check if we should throw when an
|
|
// error occurs.
|
|
static const int kThrowOnError = 0;
|
|
static const int kDontThrow = 1;
|
|
static const int kInferShouldThrowMode = 2;
|
|
|
|
// Soft limit for AdjustAmountofExternalAllocatedMemory. Trigger an
|
|
// incremental GC once the external memory reaches this limit.
|
|
static constexpr int kExternalAllocationSoftLimit = 64 * 1024 * 1024;
|
|
|
|
#ifdef V8_MAP_PACKING
|
|
static const uintptr_t kMapWordMetadataMask = 0xffffULL << 48;
|
|
// The lowest two bits of mapwords are always `0b10`
|
|
static const uintptr_t kMapWordSignature = 0b10;
|
|
// XORing a (non-compressed) map with this mask ensures that the two
|
|
// low-order bits are 0b10. The 0 at the end makes this look like a Smi,
|
|
// although real Smis have all lower 32 bits unset. We only rely on these
|
|
// values passing as Smis in very few places.
|
|
static const int kMapWordXorMask = 0b11;
|
|
#endif
|
|
|
|
V8_EXPORT static void CheckInitializedImpl(v8::Isolate* isolate);
|
|
V8_INLINE static void CheckInitialized(v8::Isolate* isolate) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
CheckInitializedImpl(isolate);
|
|
#endif
|
|
}
|
|
|
|
V8_INLINE static bool HasHeapObjectTag(Address value) {
|
|
return (value & kHeapObjectTagMask) == static_cast<Address>(kHeapObjectTag);
|
|
}
|
|
|
|
V8_INLINE static int SmiValue(Address value) {
|
|
return PlatformSmiTagging::SmiToInt(value);
|
|
}
|
|
|
|
V8_INLINE static constexpr Address IntToSmi(int value) {
|
|
return internal::IntToSmi(value);
|
|
}
|
|
|
|
V8_INLINE static constexpr bool IsValidSmi(intptr_t value) {
|
|
return PlatformSmiTagging::IsValidSmi(value);
|
|
}
|
|
|
|
#if V8_STATIC_ROOTS_BOOL
|
|
V8_INLINE static bool is_identical(Address obj, Tagged_t constant) {
|
|
return static_cast<Tagged_t>(obj) == constant;
|
|
}
|
|
|
|
V8_INLINE static bool CheckInstanceMapRange(Address obj, Tagged_t first_map,
|
|
Tagged_t last_map) {
|
|
auto map = ReadRawField<Tagged_t>(obj, kHeapObjectMapOffset);
|
|
#ifdef V8_MAP_PACKING
|
|
map = UnpackMapWord(map);
|
|
#endif
|
|
return map >= first_map && map <= last_map;
|
|
}
|
|
#endif
|
|
|
|
V8_INLINE static int GetInstanceType(Address obj) {
|
|
Address map = ReadTaggedPointerField(obj, kHeapObjectMapOffset);
|
|
#ifdef V8_MAP_PACKING
|
|
map = UnpackMapWord(map);
|
|
#endif
|
|
return ReadRawField<uint16_t>(map, kMapInstanceTypeOffset);
|
|
}
|
|
|
|
V8_INLINE static int GetOddballKind(Address obj) {
|
|
return SmiValue(ReadTaggedSignedField(obj, kOddballKindOffset));
|
|
}
|
|
|
|
V8_INLINE static bool IsExternalTwoByteString(int instance_type) {
|
|
int representation = (instance_type & kStringRepresentationAndEncodingMask);
|
|
return representation == kExternalTwoByteRepresentationTag;
|
|
}
|
|
|
|
V8_INLINE static constexpr bool CanHaveInternalField(int instance_type) {
|
|
static_assert(kJSObjectType + 1 == kFirstJSApiObjectType);
|
|
static_assert(kJSObjectType < kLastJSApiObjectType);
|
|
static_assert(kFirstJSApiObjectType < kLastJSApiObjectType);
|
|
// Check for IsJSObject() || IsJSSpecialApiObject() || IsJSApiObject()
|
|
return instance_type == kJSSpecialApiObjectType ||
|
|
// inlined version of base::IsInRange
|
|
(static_cast<unsigned>(static_cast<unsigned>(instance_type) -
|
|
static_cast<unsigned>(kJSObjectType)) <=
|
|
static_cast<unsigned>(kLastJSApiObjectType - kJSObjectType));
|
|
}
|
|
|
|
V8_INLINE static uint8_t GetNodeFlag(Address* obj, int shift) {
|
|
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
|
|
return *addr & static_cast<uint8_t>(1U << shift);
|
|
}
|
|
|
|
V8_INLINE static void UpdateNodeFlag(Address* obj, bool value, int shift) {
|
|
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
|
|
uint8_t mask = static_cast<uint8_t>(1U << shift);
|
|
*addr = static_cast<uint8_t>((*addr & ~mask) | (value << shift));
|
|
}
|
|
|
|
V8_INLINE static uint8_t GetNodeState(Address* obj) {
|
|
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
|
|
return *addr & kNodeStateMask;
|
|
}
|
|
|
|
V8_INLINE static void UpdateNodeState(Address* obj, uint8_t value) {
|
|
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
|
|
*addr = static_cast<uint8_t>((*addr & ~kNodeStateMask) | value);
|
|
}
|
|
|
|
V8_INLINE static void SetEmbedderData(v8::Isolate* isolate, uint32_t slot,
|
|
void* data) {
|
|
Address addr = reinterpret_cast<Address>(isolate) +
|
|
kIsolateEmbedderDataOffset + slot * kApiSystemPointerSize;
|
|
*reinterpret_cast<void**>(addr) = data;
|
|
}
|
|
|
|
V8_INLINE static void* GetEmbedderData(const v8::Isolate* isolate,
|
|
uint32_t slot) {
|
|
Address addr = reinterpret_cast<Address>(isolate) +
|
|
kIsolateEmbedderDataOffset + slot * kApiSystemPointerSize;
|
|
return *reinterpret_cast<void* const*>(addr);
|
|
}
|
|
|
|
V8_INLINE static void IncrementLongTasksStatsCounter(v8::Isolate* isolate) {
|
|
Address addr =
|
|
reinterpret_cast<Address>(isolate) + kIsolateLongTaskStatsCounterOffset;
|
|
++(*reinterpret_cast<size_t*>(addr));
|
|
}
|
|
|
|
V8_INLINE static Address* GetRootSlot(v8::Isolate* isolate, int index) {
|
|
Address addr = reinterpret_cast<Address>(isolate) + kIsolateRootsOffset +
|
|
index * kApiSystemPointerSize;
|
|
return reinterpret_cast<Address*>(addr);
|
|
}
|
|
|
|
V8_INLINE static Address GetRoot(v8::Isolate* isolate, int index) {
|
|
#if V8_STATIC_ROOTS_BOOL
|
|
Address base = *reinterpret_cast<Address*>(
|
|
reinterpret_cast<uintptr_t>(isolate) + kIsolateCageBaseOffset);
|
|
switch (index) {
|
|
#define DECOMPRESS_ROOT(name) \
|
|
case k##name##RootIndex: \
|
|
return base + StaticReadOnlyRoot::k##name;
|
|
EXPORTED_STATIC_ROOTS_PTR_LIST(DECOMPRESS_ROOT)
|
|
#undef DECOMPRESS_ROOT
|
|
default:
|
|
break;
|
|
}
|
|
#undef EXPORTED_STATIC_ROOTS_PTR_LIST
|
|
#endif // V8_STATIC_ROOTS_BOOL
|
|
return *GetRootSlot(isolate, index);
|
|
}
|
|
|
|
#ifdef V8_ENABLE_SANDBOX
|
|
V8_INLINE static Address* GetExternalPointerTableBase(v8::Isolate* isolate) {
|
|
Address addr = reinterpret_cast<Address>(isolate) +
|
|
kIsolateExternalPointerTableOffset +
|
|
kExternalPointerTableBufferOffset;
|
|
return *reinterpret_cast<Address**>(addr);
|
|
}
|
|
|
|
V8_INLINE static Address* GetSharedExternalPointerTableBase(
|
|
v8::Isolate* isolate) {
|
|
Address addr = reinterpret_cast<Address>(isolate) +
|
|
kIsolateSharedExternalPointerTableAddressOffset;
|
|
addr = *reinterpret_cast<Address*>(addr);
|
|
addr += kExternalPointerTableBufferOffset;
|
|
return *reinterpret_cast<Address**>(addr);
|
|
}
|
|
#endif
|
|
|
|
template <typename T>
|
|
V8_INLINE static T ReadRawField(Address heap_object_ptr, int offset) {
|
|
Address addr = heap_object_ptr + offset - kHeapObjectTag;
|
|
#ifdef V8_COMPRESS_POINTERS
|
|
if (sizeof(T) > kApiTaggedSize) {
|
|
// TODO(ishell, v8:8875): When pointer compression is enabled 8-byte size
|
|
// fields (external pointers, doubles and BigInt data) are only
|
|
// kTaggedSize aligned so we have to use unaligned pointer friendly way of
|
|
// accessing them in order to avoid undefined behavior in C++ code.
|
|
T r;
|
|
memcpy(&r, reinterpret_cast<void*>(addr), sizeof(T));
|
|
return r;
|
|
}
|
|
#endif
|
|
return *reinterpret_cast<const T*>(addr);
|
|
}
|
|
|
|
V8_INLINE static Address ReadTaggedPointerField(Address heap_object_ptr,
|
|
int offset) {
|
|
#ifdef V8_COMPRESS_POINTERS
|
|
uint32_t value = ReadRawField<uint32_t>(heap_object_ptr, offset);
|
|
Address base = GetPtrComprCageBaseFromOnHeapAddress(heap_object_ptr);
|
|
return base + static_cast<Address>(static_cast<uintptr_t>(value));
|
|
#else
|
|
return ReadRawField<Address>(heap_object_ptr, offset);
|
|
#endif
|
|
}
|
|
|
|
V8_INLINE static Address ReadTaggedSignedField(Address heap_object_ptr,
|
|
int offset) {
|
|
#ifdef V8_COMPRESS_POINTERS
|
|
uint32_t value = ReadRawField<uint32_t>(heap_object_ptr, offset);
|
|
return static_cast<Address>(static_cast<uintptr_t>(value));
|
|
#else
|
|
return ReadRawField<Address>(heap_object_ptr, offset);
|
|
#endif
|
|
}
|
|
|
|
V8_INLINE static v8::Isolate* GetIsolateForSandbox(Address obj) {
|
|
#ifdef V8_ENABLE_SANDBOX
|
|
return reinterpret_cast<v8::Isolate*>(
|
|
internal::IsolateFromNeverReadOnlySpaceObject(obj));
|
|
#else
|
|
// Not used in non-sandbox mode.
|
|
return nullptr;
|
|
#endif
|
|
}
|
|
|
|
template <ExternalPointerTag tag>
|
|
V8_INLINE static Address ReadExternalPointerField(v8::Isolate* isolate,
|
|
Address heap_object_ptr,
|
|
int offset) {
|
|
#ifdef V8_ENABLE_SANDBOX
|
|
static_assert(tag != kExternalPointerNullTag);
|
|
// See src/sandbox/external-pointer-table-inl.h. Logic duplicated here so
|
|
// it can be inlined and doesn't require an additional call.
|
|
Address* table = IsSharedExternalPointerType(tag)
|
|
? GetSharedExternalPointerTableBase(isolate)
|
|
: GetExternalPointerTableBase(isolate);
|
|
internal::ExternalPointerHandle handle =
|
|
ReadRawField<ExternalPointerHandle>(heap_object_ptr, offset);
|
|
uint32_t index = handle >> kExternalPointerIndexShift;
|
|
std::atomic<Address>* ptr =
|
|
reinterpret_cast<std::atomic<Address>*>(&table[index]);
|
|
Address entry = std::atomic_load_explicit(ptr, std::memory_order_relaxed);
|
|
return entry & ~tag;
|
|
#else
|
|
return ReadRawField<Address>(heap_object_ptr, offset);
|
|
#endif // V8_ENABLE_SANDBOX
|
|
}
|
|
|
|
#ifdef V8_COMPRESS_POINTERS
|
|
V8_INLINE static Address GetPtrComprCageBaseFromOnHeapAddress(Address addr) {
|
|
return addr & -static_cast<intptr_t>(kPtrComprCageBaseAlignment);
|
|
}
|
|
|
|
V8_INLINE static Address DecompressTaggedField(Address heap_object_ptr,
|
|
uint32_t value) {
|
|
Address base = GetPtrComprCageBaseFromOnHeapAddress(heap_object_ptr);
|
|
return base + static_cast<Address>(static_cast<uintptr_t>(value));
|
|
}
|
|
|
|
#endif // V8_COMPRESS_POINTERS
|
|
};
|
|
|
|
// Only perform cast check for types derived from v8::Data since
|
|
// other types do not implement the Cast method.
|
|
template <bool PerformCheck>
|
|
struct CastCheck {
|
|
template <class T>
|
|
static void Perform(T* data);
|
|
};
|
|
|
|
template <>
|
|
template <class T>
|
|
void CastCheck<true>::Perform(T* data) {
|
|
T::Cast(data);
|
|
}
|
|
|
|
template <>
|
|
template <class T>
|
|
void CastCheck<false>::Perform(T* data) {}
|
|
|
|
template <class T>
|
|
V8_INLINE void PerformCastCheck(T* data) {
|
|
CastCheck<std::is_base_of<Data, T>::value &&
|
|
!std::is_same<Data, std::remove_cv_t<T>>::value>::Perform(data);
|
|
}
|
|
|
|
// A base class for backing stores, which is needed due to vagaries of
|
|
// how static casts work with std::shared_ptr.
|
|
class BackingStoreBase {};
|
|
|
|
// The maximum value in enum GarbageCollectionReason, defined in heap.h.
|
|
// This is needed for histograms sampling garbage collection reasons.
|
|
constexpr int kGarbageCollectionReasonMaxValue = 27;
|
|
|
|
// Helper functions about values contained in handles.
|
|
class ValueHelper final {
|
|
public:
|
|
#ifdef V8_ENABLE_CONSERVATIVE_STACK_SCANNING
|
|
static constexpr Address kLocalTaggedNullAddress = 1;
|
|
|
|
template <typename T>
|
|
static constexpr T* EmptyValue() {
|
|
return reinterpret_cast<T*>(kLocalTaggedNullAddress);
|
|
}
|
|
|
|
template <typename T>
|
|
V8_INLINE static Address ValueAsAddress(const T* value) {
|
|
return reinterpret_cast<Address>(value);
|
|
}
|
|
|
|
template <typename T, typename S>
|
|
V8_INLINE static T* SlotAsValue(S* slot) {
|
|
return *reinterpret_cast<T**>(slot);
|
|
}
|
|
|
|
template <typename T>
|
|
V8_INLINE static T* ValueAsSlot(T* const& value) {
|
|
return reinterpret_cast<T*>(const_cast<T**>(&value));
|
|
}
|
|
|
|
#else // !V8_ENABLE_CONSERVATIVE_STACK_SCANNING
|
|
|
|
template <typename T>
|
|
static constexpr T* EmptyValue() {
|
|
return nullptr;
|
|
}
|
|
|
|
template <typename T>
|
|
V8_INLINE static Address ValueAsAddress(const T* value) {
|
|
return *reinterpret_cast<const Address*>(value);
|
|
}
|
|
|
|
template <typename T, typename S>
|
|
V8_INLINE static T* SlotAsValue(S* slot) {
|
|
return reinterpret_cast<T*>(slot);
|
|
}
|
|
|
|
template <typename T>
|
|
V8_INLINE static T* ValueAsSlot(T* const& value) {
|
|
return value;
|
|
}
|
|
|
|
#endif // V8_ENABLE_CONSERVATIVE_STACK_SCANNING
|
|
};
|
|
|
|
} // namespace internal
|
|
} // namespace v8
|
|
|
|
#endif // INCLUDE_V8_INTERNAL_H_
|