mapillary_download/lib/sequence.py

318 lines
12 KiB
Python
Raw Normal View History

2023-09-10 21:02:33 +02:00
import os
import sys
import lib.io
import lib.geo
from lib.exif import EXIF, verify_exif
from collections import OrderedDict
import datetime
'''
Sequence class for organizing/cleaning up photos in a folder
- split to sequences based on time intervals
- split to sequences based on gps distances
- remove duplicate images (e.g. waiting for red light, in traffic etc) @simonmikkelsen
'''
MAXIMUM_SEQUENCE_LENGTH = 1000
class Sequence(object):
def __init__(self, filepath, skip_folders=[], skip_subfolders=False, check_exif=True):
self.filepath = filepath
self._skip_folders = skip_folders
self._skip_subfolders = skip_subfolders
self.file_list = self.get_file_list(filepath, check_exif)
self.num_images = len(self.file_list)
def _is_skip(self, filepath):
'''
Skip photos in specified folders
- filepath/duplicates: it stores potential duplicate photos
detected by method 'remove_duplicates'
- filepath/success: it stores photos that have been successfully
'''
_is_skip = False
for folder in self._skip_folders:
if folder in filepath:
_is_skip = True
if self._skip_subfolders and filepath != self.filepath:
_is_skip = True
return _is_skip
def _read_capture_time(self, filename):
'''
Use EXIF class to parse capture time from EXIF.
'''
exif = EXIF(filename)
return exif.extract_capture_time()
def _read_lat_lon(self, filename):
'''
Use EXIF class to parse latitude and longitude from EXIF.
'''
exif = EXIF(filename)
lon, lat = exif.extract_lon_lat()
return lat, lon
def _read_direction(self, filename):
'''
Use EXIF class to parse compass direction from EXIF.
'''
exif = EXIF(filename)
direction = exif.extract_direction()
return direction
def get_file_list(self, filepath, check_exif=True):
'''
Get the list of JPEGs in the folder (nested folders)
'''
if filepath.lower().endswith(".jpg"):
# single file
file_list = [filepath]
else:
file_list = []
for root, sub_folders, files in os.walk(self.filepath):
if not self._is_skip(root):
image_files = [os.path.join(root, filename) for filename in files if (filename.lower().endswith(".jpg"))]
if check_exif:
image_files = [f for f in image_files if verify_exif(f)]
file_list += image_files
return file_list
def sort_file_list(self, file_list):
'''
Read capture times and sort files in time order.
'''
if len(file_list) == 0:
return [], []
capture_times = [self._read_capture_time(filepath) for filepath in file_list]
sorted_times_files = zip(capture_times, file_list)
sorted_times_files.sort()
return zip(*sorted_times_files)
def move_groups(self, groups, sub_path=''):
'''
Move the files in the groups to new folders.
'''
for i,group in enumerate(groups):
new_dir = os.path.join(self.filepath, sub_path, str(i))
lib.io.mkdir_p(new_dir)
for filepath in group:
os.rename(filepath, os.path.join(new_dir, os.path.basename(filepath)))
print("Moved {0} photos to {1}".format(len(group), new_dir))
def set_skip_folders(self, folders):
'''
Set folders to skip when iterating through the path
'''
self._skip_folders = folders
def set_file_list(self, file_list):
'''
Set file list for the sequence
'''
self.file_list = file_list
def split(self, cutoff_distance=500., cutoff_time=None, max_sequence_length=MAXIMUM_SEQUENCE_LENGTH, move_files=True, verbose=False, skip_cutoff=False):
'''
Split photos into sequences in case of large distance gap or large time interval
@params cutoff_distance: maximum distance gap in meters
@params cutoff_time: maximum time interval in seconds (if None, use 1.5 x median time interval in the sequence)
'''
file_list = self.file_list
groups = []
if len(file_list) >= 1:
# sort based on EXIF capture time
capture_times, file_list = self.sort_file_list(file_list)
# diff in capture time
capture_deltas = [t2-t1 for t1,t2 in zip(capture_times, capture_times[1:])]
# read gps for ordered files
latlons = [self._read_lat_lon(filepath) for filepath in file_list]
# distance between consecutive images
distances = [lib.geo.gps_distance(ll1, ll2) for ll1, ll2 in zip(latlons, latlons[1:])]
# if cutoff time is given use that, else assume cutoff is 1.5x median time delta
if cutoff_time is None:
if verbose:
print "Cut-off time is None"
median = sorted(capture_deltas)[len(capture_deltas)//2]
if type(median) is not int:
median = median.total_seconds()
cutoff_time = 1.5*median
# extract groups by cutting using cutoff time
group = [file_list[0]]
cut = 0
for i,filepath in enumerate(file_list[1:]):
cut_time = capture_deltas[i].total_seconds() > cutoff_time
cut_distance = distances[i] > cutoff_distance
cut_sequence_length = len(group) > max_sequence_length
if cut_time or cut_distance or cut_sequence_length:
cut += 1
# delta too big, save current group, start new
groups.append(group)
group = [filepath]
if verbose:
if cut_distance:
print 'Cut {}: Delta in distance {} meters is too bigger than cutoff_distance {} meters at {}'.format(cut,distances[i], cutoff_distance, file_list[i+1])
elif cut_time:
print 'Cut {}: Delta in time {} seconds is bigger then cutoff_time {} seconds at {}'.format(cut, capture_deltas[i].total_seconds(), cutoff_time, file_list[i+1])
elif cut_sequence_length:
print 'Cut {}: Maximum sequence length {} reached at {}'.format(cut, max_sequence_length, file_list[i+1])
else:
group.append(filepath)
groups.append(group)
# move groups to subfolders
if move_files:
self.move_groups(groups)
print("Done split photos in {} into {} sequences".format(self.filepath, len(groups)))
return groups
def interpolate_direction(self, offset=0):
'''
Interpolate bearing of photos in a sequence with an offset
@author: mprins
'''
bearings = {}
file_list = self.file_list
num_file = len(file_list)
if num_file > 1:
# sort based on EXIF capture time
capture_times, file_list = self.sort_file_list(file_list)
# read gps for ordered files
latlons = [self._read_lat_lon(filepath) for filepath in file_list]
if len(file_list) > 1:
# bearing between consecutive images
bearings = [lib.geo.compute_bearing(ll1[0], ll1[1], ll2[0], ll2[1])
for ll1, ll2 in zip(latlons, latlons[1:])]
bearings.append(bearings[-1])
bearings = {file_list[i]: lib.geo.offset_bearing(b, offset) for i, b in enumerate(bearings)}
elif num_file == 1:
#if there is only one file in the list, just write the direction 0 and offset
bearings = {file_list[0]: lib.geo.offset_bearing(0.0, offset)}
return bearings
def interpolate_timestamp(self):
'''
Interpolate time stamps in case of identical timestamps within a sequence
'''
timestamps = []
file_list = self.file_list
num_file = len(file_list)
time_dict = OrderedDict()
capture_times, file_list = self.sort_file_list(file_list)
if num_file < 2:
return capture_times, file_list
# trace identical timestamps (always assume capture_times is sorted)
time_dict = OrderedDict()
for i, t in enumerate(capture_times):
if t not in time_dict:
time_dict[t] = {
"count": 0,
"pointer": 0
}
interval = 0
if i != 0:
interval = (t - capture_times[i-1]).total_seconds()
time_dict[capture_times[i-1]]["interval"] = interval
time_dict[t]["count"] += 1
if len(time_dict) >= 2:
# set time interval as the last available time interval
time_dict[time_dict.keys()[-1]]["interval"] = time_dict[time_dict.keys()[-2]]["interval"]
else:
# set time interval assuming capture interval is 1 second
time_dict[time_dict.keys()[0]]["interval"] = time_dict[time_dict.keys()[0]]["count"] * 1.
# interpolate timestampes
for f, t in zip(file_list, capture_times):
d = time_dict[t]
s = datetime.timedelta(seconds=d["pointer"] * d["interval"] / float(d["count"]))
updated_time = t + s
time_dict[t]["pointer"] += 1
timestamps.append(updated_time)
return timestamps, file_list
def remove_duplicates(self, min_distance=1e-5, min_angle=5):
'''
Detect duplidate photos in a folder
@source: a less general version of @simonmikkelsen's duplicate remover
'''
file_list = self.file_list
# ordered list by time
capture_times, file_list = self.sort_file_list(file_list)
# read gps for ordered files
latlons = [self._read_lat_lon(filepath) for filepath in file_list]
# read bearing for ordered files
bearings = [self._read_direction(filepath) for filepath in file_list]
# interploated bearings
interpolated_bearings = [lib.geo.compute_bearing(ll1[0], ll1[1], ll2[0], ll2[1])
for ll1, ll2 in zip(latlons, latlons[1:])]
interpolated_bearings.append(bearings[-1])
# use interploated bearings if bearing not available in EXIF
for i, b in enumerate(bearings):
bearings[i] = b if b is not None else interpolated_bearings[i]
is_duplicate = False
prev_unique = file_list[0]
prev_latlon = latlons[0]
prev_bearing = bearings[0]
groups = []
group = []
for i, filename in enumerate(file_list[1:]):
k = i+1
distance = lib.geo.gps_distance(latlons[k], prev_latlon)
if bearings[k] is not None and prev_bearing is not None:
bearing_diff = lib.geo.diff_bearing(bearings[k], prev_bearing)
else:
# Not use bearing difference if no bearings are available
bearing_diff = 360
if distance < min_distance and bearing_diff < min_angle:
is_duplicate = True
else:
prev_latlon = latlons[k]
prev_bearing = bearings[k]
if is_duplicate:
group.append(filename)
else:
if group:
groups.append(group)
group = []
is_duplicate = False
groups.append(group)
# move to filepath/duplicates/group_id (TODO: uploader should skip the duplicate folder)
self.move_groups(groups, 'duplicates')
print("Done remove duplicate photos in {} into {} groups".format(self.filepath, len(groups)))
return groups