Sorbonne Université

SESI M2 - ProgPar

Parallel Programming — TPS: Dataflow for Motion Application

Short introduction In this session, we will work on a streaming application that detects and tracks moving
objects from a video sequence. Contrary to the previous sessions, we will not use EASYPAP this time. The later
is not adapted for streaming applications. A working streaming application will be given to you and you will have
to use AFF3CT to implement the MOTION application through an explicit dataflow representation.

Very important, about the submission of your work At the end of this session you will have to upload the
following files on Moodle: 1) a zip of the src folder and 2) a zip of the include folder. After that you will have 2
weeks (until October, 29) to complete your work and update your first submission. You have to work in group of
two people but each of you will have to upload the file on Moodle. Finally, please write your name plus the name
of your pair at the top of all these files.

1 Appetizer

First you need to clone the repository of the MOTION project:
git clone --recursive https://gitlab.lip6.fr/cassagnea/motion-se.git

The MOTION project uses CMake in order to generate a Makefile: follow the README instructions to compile
the code.

mathematical morphology | |[connected components | [connected componcnls‘ [surche :

[motion detection
opening-closing labeling (CCL) analysis (CCA) ‘ Iﬁllenng)

XA (per pixel)

motion detection
1| XA (per pixel)

grayscale pixels blob of binary pixels image of labels CCs = list of regions, sub-list of CCs
p € [0;255] p € {0,1}, 0 — stationary, 1 — moving 1€ (1,22 1] surface S & centroid (xg,yG) with S € [Smin, Smax]

| grayscale image i
)

temporal
tracking

| k-nearest neighboor 3
! hing (k-NN) [T

list of (t—1,t) final list of
associations moving objects

| connected componenls} [surche J

| connected components
i analysis (CCA) ‘ lﬁllcnng

labeling (CCL)

mathematical morphology
opening-closing

| grayscale image
i (®)

Figure 1: MOTION detection and tracking processing graph.

Fig. 1 presents the different algorithms used to detect moving objects and to track them over time. To make it
work, two strong assumptions are made: 1) the camera is fixed, 2) the light intensity is constant over time. First,
an image is read from a camera (or a video sequence) and then it is converted in a grayscale image. Then, the XA
algorithm is triggered. This algorithm is able to detect if a pixel is moving over time. It returns a binary image, if
a pixel value is 0, then it means that it is not moving. Else, if a pixel value is 1, then it means that it is moving.
After that, morphology algorithms are applied'. This is a pre-processing to regroup moving pixels together and
eliminate isolated pixels. Then, from a binary image, a connected components labeling algorithm is performed.
The later, gives the same label to a group of pixel that are connected to each other. CCL returns an image of labels
where / = 0 means no object and / > 0 means a moving object. From this image of label, some components are
extracted (CCA): for each object the center of mass (xg,yc), the bounding box ([Xmin,Xmax; Ymin,Ymax]) and the
surface § are extracted. Depending on their surface, the objects are filtered (Spin < S < Smax)-

From two images at r — 1 and ¢, a matching algorithm determines which objects are the same in the two different
images (mainly according to their distance). At the end, the identified object are tracked to have a constant
identifier over time.

This graph of tasks is then repeated until the video sequence is over. It is not mandatory to understand per-
fectly each algorithm. The purpose of this session is to work on a streaming application, representative of a real
application, and to perform optimizations at the tasks graph level.

In this graph, two tasks cannot be replicated. The per pixel motion algorithm requires its previous output to
compute the current binary image. It detects intensity variations over time. It is almost the same for the tracking
algorithm that maintains a list of tracks that are updated according to the last frame.

Mathematical morphology: https://en.wikipedia.org/wiki/Mathematical_morphology

1.1 Run MOTION

To run the code you will need some input videos. You can download a videos collection on Moodle (see the
“Artifacts” section) from this web link: http://www.potionmagic.eu/"adrien/data/traffic.zip.
First, unzip the traffic.zip and from the build directory run the code with the following command:

./bin/motion2 --vid-in-path ./traffic/1080p_day_street_top_view_snow.mp4 \
--flt-s-min 2000 --knn-d 50 --trk-obj-min 5 --vid-out-play --vid-out-id

You should see a window with a top view of a highway and some moving cars (see Fig. 2) and you should see
green bounding boxes around the cars.

Figure 2: MOTION screenshot (with --vid-out-play --vid-out-id parameters).

1.2 Architecture of the Project

MOTION is mainly a C-style project but it is compiled in C++ to use AFF3CT. The sources are located in the src
folder, and there are 3 sub-folders:

e common: contains implementations of the processing tasks,
* main: contains source files that correspond to a final binary executable,
* wrapper: contains C++ files to wrap the C-style processing functions into AFF3CT modules and tasks.

The headers are located in the include folder. Inside there are two sub-folders: c/motion for the C-style headers
and cpp/motion for the C++ headers.

2 From a Standard Description to a Dataflow Description

2.1 motion2 Executables

We will convert the motion2 main into a dataflow description (= AFF3CT modules and tasks). The motion2 is
located here src/main/motion2.c. This implementation is very close to the tasks graph presented in Fig. 1.

Work to do #1 Understand the code, run the motion2 executable and play with the parameters (-h shows and
describes the available parameters).

To help you in the task, we created an other main based on motion2.c and we converted some C functions into
AFF3CT modules for you. See the motion2_aff3ct.cpp file.

Page 2

Work to do #2 Understand the code, run the motion2-aff3ct executable and play with the parameters (-h
shows and describes the available parameters). You can understand the code of motion2_aff3ct.cpp by com-
paring it with the C-style motion2. c code.

Work to do #3 Create new AFF3CT modules and tasks, each time you will create new . cpp and . hpp files in
the wrapper folders. You will only declare input and output sockets (no forward sockets at this time):
1. Sigma_delta: with a compute task that will call the sigma_delta_compute function,

2. Morpho: with a compute task that will call the morpho_compute_opening3 and
morpho_compute_closing3 functions,

3. CCL: with an apply task that will call the CCL_LSL_apply function,
4. Features_CCA: with an extract task that will call the features_extract function,

5. Features_filter: with an filter task that will call the features_filter_surface and
features_shrink_basic functions,

6. KNN: with a match task that will call the kNN_match function,
7. Tracking: with a perform task that will call the tracking_perform function.

You will add the AFF3CT modules and tasks incrementally in the motion2_aff3ct. cpp file and you will test if
their integration is working (you can compare the logs with a diff, see the Note #1 below). Have a look on how
we did this for the other AFF3CT tasks that are given to you. You will follow the same philosophy: 1) bind the
sockets to the buffers allocated in the main file and 2) call the . exec () method explicitly.

Note #1 motion2 is our golden model. To compare the results of motion2 and motion2-aff3ct you can
generates the logs of motion2 executable first:

./bin/motion2 --vid-in-path ./traffic/1080p_day_street_top_view_snow.mp4 \
--vid-in-stop 20 --flt-s-min 2000 --knn-d 50 --trk-obj-min 5 --log-path logs_refs

Secondly, you can generate the logs of the motion2-aff3ct executable:

./bin/motion2-aff3ct --vid-in-path ./traffic/1080p_day_street_top_view_snow.mp4d \
--vid-in-stop 20 --flt-s-min 2000 --knn-d 50 --trk-obj-min 5 --log-path logs_aff3ct

Finally you need to compare the logs together:

diff logs_refs logs_aff3ct

If the later command returns nothing, it means that motion2 and motion2-aff3ct are equivalent (in term of
features). This is good!

Work to do #4 At this point you should only have AFF3CT tasks that call their .exec() method explicitly.
Now, the objective is to get rid of this. You will bind the tasks together and create a sequence. You should remove
all the data allocations from the main file, AFF3CT will do it for you.

Note #2 In the motion2 executable, some tasks are not executed in the first stream. To simplify, in the
motion2-aff3ct executable, you will always execute all the tasks. This will change the results a little bit.

Note #3 You will need to use a Delayer module to keep the # — 1 image in memory. If not the image will we
overwritten when calling the video ("generate") task.

Page 3

Note #4 To help you in the debugging, you can print the inner sequence graph with the Sequence . export_dot
method.

Work todo#5 Before the sequence execution, you will enable the statistics of the task (Sequence.get_modules
method). And after the sequence execution you will print them at the end (tools: : Stats: : show function). What
do you see? Is it different than from the motion2 executable? Explain.

Work to do #6 When you think it’s necessary, create new tasks, postfixed with _fwd, that use forward socket
instead of the combination of input and output sockets. Do it incrementally to validate that the application is still
working. Can you see an improvement in the statistics of the tasks?

To be continue...

Page 4

