
Sorbonne Université – SESI M2
——–

MU5IN160 – Parallel Programming

Hands-on Session 5 – Dataflow for Motion Application

Short introduction In this session, we will work on a streaming application that detects and tracks
moving objects from a video sequence. Contrary to the previous sessions, we will not use EasyPAP
this time. The later is not adapted for streaming applications. A working streaming application will
be given to you and you will have to use AFF3CT to implement the Motion application through an
explicit dataflow representation.

Very important, about the submission of your work At the end of this session you will have to
upload the following files on Moodle: 1) a zip of the src folder and 2) a zip of the include folder. After
that you will have 2 weeks (until October, 29) to complete your work and update your first submission.
You have to work in group of two people but each of you will have to upload the file on Moodle. Finally,
please write your name plus the name of your pair at the top of all these files.

1 Appetizer
First you need to clone the repository of the Motion project:

git clone --recursive https://gitlab.lip6.fr/cassagnea/motion-se.git

The Motion project uses CMake in order to generate a Makefile: follow the README instructions to
compile the code.

grayscale image
(t− 1)

motion detection
Σ∆ (per pixel)

mathematical morphology
opening-closing

connected components
labeling (CCL)

connected components
analysis (CCA)

surface
filtering

grayscale image
(t)

motion detection
Σ∆ (per pixel)

mathematical morphology
opening-closing

connected components
labeling (CCL)

connected components
analysis (CCA)

surface
filtering

k-nearest neighboor
matching (k-NN)

temporal
tracking

grayscale pixels
p ∈ [0; 255]

blob of binary pixels
p ∈ {0, 1}, 0 → stationary, 1 → moving

image of labels
l ∈ [1; 232 − 1]

CCs = list of regions,
surface S & centroid (xG, yG)

sub-list of CCs
with S ∈ [Smin, Smax]

list of (t− 1, t)
associations

final list of
moving objects

Figure 1: Motion detection and tracking processing graph. In gray and italic: the output of each
processing.

Fig. 1 presents the different algorithms used to detect moving objects and to track them over time. To
make it work, two strong assumptions are made: 1) the camera is fixed, 2) the light intensity is constant
over time. First, an image is read from a camera (or a video sequence) and then it is converted in a
grayscale image. Then, the Σ∆ algorithm is triggered. This algorithm is able to detect if a pixel is
moving over time. It returns a binary image, if a pixel value is 0, then it means that it is not moving.
Else, if a pixel value is 1, then it means that it is moving. After that, morphology algorithms are applied1.
This is a pre-processing to regroup moving pixels together and eliminate isolated pixels. Then, from a
binary image, a connected components labeling algorithm is performed. The later, gives the same label
to a group of pixel that are connected to each other. CCL returns an image of labels where l = 0 means
no object and l > 0 means a moving object. From this image of label, some components are extracted
(CCA): for each object the center of mass (xG, yG), the bounding box ([xmin, xmax, ymin, ymax]) and the
surface S are extracted. Depending on their surface, the objects are filtered (Smin < S < Smax).

From two images at t− 1 and t, a matching algorithm determines which objects are the same in the two
different images (mainly according to their distance). At the end, the identified objects are tracked to
have a constant identifier over time.

This graph of tasks is then repeated until the video sequence is over. It is not mandatory to understand
perfectly each algorithm. The purpose of this session is to work on a streaming application, representative
of a real application, and to perform optimizations at the tasks graph level.

1Mathematical morphology: https://en.wikipedia.org/wiki/Mathematical_morphology



In this graph, two tasks cannot be replicated. The per pixel motion algorithm requires its previous
output to compute the current binary image. It detects intensity variations over time. It is almost the
same for the tracking algorithm that maintains a list of tracks that are updated according to the last
frame.

1.1 Run Motion
To run the code you will need some input videos. You can download a videos collection on Moodle (see the
“Artifacts” section) or from this web link: http://www.potionmagic.eu/~adrien/data/traffic.zip.
First, unzip the traffic.zip and from the build directory run the code with the following command:

./bin/motion2 --vid-in-path ./traffic/1080p_day_street_top_view_snow.mp4 \
--flt-s-min 2000 --knn-d 50 --trk-obj-min 5 --vid-out-play --vid-out-id

You should see a window with a top view of a highway and some moving cars (see Fig. 2) and you should
see green bounding boxes around the cars.

Figure 2: Motion screenshot (with –-vid-out-play –-vid-out-id parameters).

1.2 Architecture of the Project
Motion is mainly a C-style project but it is compiled in C++ to use AFF3CT. The sources are located
in the src folder, and there are 3 sub-folders:

• common: contains implementations of the processing tasks,
• main: contains source files that correspond to a final binary executable,
• wrapper: contains C++ files to wrap the C-style processing functions into AFF3CT modules and

tasks.

The headers are located in the include folder. Inside there are two sub-folders: c/motion for the C-style
headers and cpp/motion for the C++ headers.

2 From a Standard Description to a Dataflow Description
We will convert the motion2 main into a dataflow description (= AFF3CT modules and tasks). The
motion2 is located here src/main/motion2.c. This implementation is very close to the tasks graph
presented in Fig. 1.

Page 2



Work to do #1 Understand the code, run the motion2 executable and play with the parameters (-h
shows and describes the available parameters).

To help you in the task, we created an other main based on motion2.c and we converted some C functions
into AFF3CT modules for you. See the motion2_aff3ct.cpp file.

Work to do #2 Understand the code, run the motion2-aff3ct executable and play with the param-
eters (-h shows and describes the available parameters). Understand the code of motion2_aff3ct.cpp
by comparing it with the C-style motion2.c code.

Work to do #3 Create new AFF3CT modules and tasks, each time you will create new .cpp and
.hpp files in the wrapper folders. You will only declare input and output sockets (no forward sockets at
this time):

1. Sigma_delta: with a compute task that will call the sigma_delta_compute function,

2. Morpho: with a compute task that will call the morpho_compute_opening3 and
morpho_compute_closing3 functions (be sure to copy the borders from the input binary image
into the output binary image!),

3. CCL: with an apply task that will call the CCL_LSL_apply function,

4. Features_CCA: with an extract task that will call the features_extract function,

5. Features_filter: with an filter task that will call the features_filter_surface and
features_shrink_basic functions (note that the maximum input size of the features differs from
the maximum size of the output features: indeed, the main purpose of the shrink function is to
reduce the maximum number of features and to save memory space),

6. KNN: with a match task that will call the kNN_match function,

7. Tracking: with a perform task that will call the tracking_perform function.

Add the AFF3CT modules and tasks incrementally in the motion2_aff3ct.cpp file and you will test if
their integration is working (you can compare the logs with a diff, see Note #2 below). Have a look on
how we did this for the other AFF3CT tasks that are given to you. You will follow the same philosophy:
1) bind the sockets to the buffers allocated in the main file and 2) call the .exec() method explicitly.

Note #1 It is NOT possible to create sockets of RoI_t structure. Only the basic C types are supported.
To get around this limitation you can count the number of bytes in the structure. For instance, you can
do something like:

auto si_RoIs = this->template create_socket_in<uint8_t>(t, "in_RoIs", max_size * sizeof(RoI_t));

Note #2 motion2 is our golden model. To compare the results of motion2 and motion2-aff3ct you
need to generate the logs of motion2 executable first (we do it for only 20 frames to execute faster):

./bin/motion2 --vid-in-path ./traffic/1080p_day_street_top_view_snow.mp4 \
--vid-in-stop 20 --flt-s-min 2000 --knn-d 50 --trk-obj-min 5 --log-path logs_refs

Secondly, you need to generate the logs of the motion2-aff3ct executable:

./bin/motion2-aff3ct --vid-in-path ./traffic/1080p_day_street_top_view_snow.mp4 \
--vid-in-stop 20 --flt-s-min 2000 --knn-d 50 --trk-obj-min 5 --log-path logs_aff3ct

Finally you need to compare the logs together:

diff logs_refs logs_aff3ct

If the later command returns nothing, it means that motion2 and motion2-aff3ct are equivalent (in
term of features). This is good, your new implementation is correct! If not... it is time to debug :’-(.

Page 3



Work to do #4 At this point you should only have AFF3CT tasks that call their .exec() method
explicitly. Now, the objective is to get rid of this. You will bind the tasks together and create a sequence.
You should remove all the data allocations from the main file, AFF3CT will do it for you. It is advised
to keep the previous working version (with the explicit .exec() calls) somewhere when working on the
new version with a sequence. Of course, you will test if it works correctly (please refer to Note #2).

Note #3 You will need to use a Delayer module to keep the t− 1 image in memory. If not the image
will be overwritten when calling the video("generate") task.

Note #4 In the motion2 executable, some tasks are not executed in the first stream (see the following
condition in the motion2.c file: “if (n_processed_frames > 0)”). To manage it you have two possible
options:

• Use a Switcher and a Controller_limit module to implement the control flow (= if condition).
To simplify, you will only put the Sigma_delta.compute() task in the condition. In other terms,
the CCL, the CCA and the filtering will be executed anyway,

• Always execute the tasks (no control flow) but in this case you need to carefully initialize the
Delayer module to the first frame (this solution is simpler to implement).

Sub-sequence 0

Delayer
exec order: [13]
addr: 0x16b1660a8

memorize (id = 13)

Tracking
exec order: [14]
addr: 0x16b166468

perform (id = 14)

Sigma_delta
Sigma_delta1
exec order: [7]

addr: 0x16b166cc8

compute (id = 7)

Morpho
Morpho1

exec order: [8]
addr: 0x16b166b38

compute (id = 8)

CCL
CCL1

exec order: [9]
addr: 0x16b1669a8

apply (id = 9)

Features_CCA
CCA1

exec order: [10]
addr: 0x16b166808

extract (id = 10)

Features_filter
Ftr_filter1

exec order: [11]
addr: 0x16b166618

filter (id = 11)

KNN
exec order: [12]
addr: 0x16b166548

match (id = 12)

Delayer
exec order: [0]

addr: 0x16b1660a8

produce (id = 0)

Sigma_delta
Sigma_delta0
exec order: [1]

addr: 0x16b166d98

compute (id = 1)

Morpho
Morpho0

exec order: [2]
addr: 0x16b166c00

compute (id = 2)

CCL
CCL0

exec order: [3]
addr: 0x16b166a70

apply (id = 3)

Features_CCA
CCA0

exec order: [4]
addr: 0x16b1668d8

extract (id = 4)

Features_filter
Ftr_filter0

exec order: [5]
addr: 0x16b166710

filter (id = 5)

Video
exec order: [6]

addr: 0x16b166e98

generate (id = 6)

out[0]:out

in[0]:in_img

out[1]:status

out[1]:out_img

in[0]:in_img

out[2]:status

out[1]:out_img

in[0]:in_img

out[2]:status

out[1]:out_labels

in[0]:in_labels

0

in[0]:in_labels

1

out[2]:out_n_RoIs

in[1]:in_n_RoIs

0

in[1]:in_n_RoIs

1

out[3]:status

out[2]:out_RoIs

in[2]:in_RoIs

out[3]:status

out[3]:out_labelsout[4]:out_n_RoIs

in[1]:in_n_RoIs0

out[5]:out_RoIs

in[0]:in_RoIs0

out[6]:status

out[0]:out_img

in[0]:in_img

0

in[0]:in

1

out[1]:out_frame

in[0]:in_frame

out[2]:status

out[1]:out_img

in[0]:in_img

out[2]:status

out[1]:out_img

in[0]:in_img

out[2]:status

out[1]:out_labels

in[0]:in_labels

0

in[0]:in_labels

1

out[2]:out_n_RoIs

in[1]:in_n_RoIs

0

in[1]:in_n_RoIs

1

out[3]:status

out[2]:out_RoIs

in[2]:in_RoIs

out[3]:status

out[3]:out_labelsout[4]:out_n_RoIs

in[3]:in_n_RoIs1

0

in[2]:in_n_RoIs

1

out[5]:out_RoIs

in[2]:in_RoIs1

out[6]:status

out[4]:out_RoIs0out[5]:out_RoIs1

in[1]:in_RoIs

out[6]:out_nearestout[7]:out_distancesout[8]:status

out[1]:status

out[3]:status

Figure 3: Expected AFF3CT tasks graph without logs, without visualization and without control flow.

Note #5 To help you in the debugging, you can print the sequence graph with the export_dot method.
Enable/disable the logs, enable/disable the visualization and observe the impact on the tasks graph. If
you chose to do not implement control flow, the output graph should looks like in Fig. 3. Note that you
can personalize the name of a module with the set_custom_name(std::string custom_name) method.

Page 4



Work to do #5 Before the sequence execution, you will enable the statistics of the task (call the
get_modules method on a sequence object). And after the sequence execution you will print them at
the end (tools::Stats::show function). The application will display the statistics only if there is the
--stats parameter. What do you see? Is it different than from the motion2 executable? Explain.

[Bonus] Work to do #6 When you think it’s necessary, create new tasks, postfixed with a f, that use
forward socket instead of input/output sockets combination. For instance, if we consider a task named
compute without forward socket, the task that uses forward socket will be named computef. You will
NOT replace the former compute task. Using forward sockets should help you to remove useless
copies. Do it incrementally to validate that the application is still working (see Note #2). Can you see
an improvement in the statistics of the tasks?

To be continue...

Page 5


