
Multi-threading on CPUs with OpenMP and
Metrics for Performance Analysis of Applications
Sorbonne Université – Master SESI – MU5IN60 – Parallel Programming

Adrien Cassagne

October 9, 2023

mailto:adrien.cassagne@lip6.fr

Table of Contents
1 Introduction to OpenMP

▶ Introduction to OpenMP

▶ OpenMP Use Cases

▶ Parallel Code Analysis

▶ Kernel Performance Analysis

▶ References

Programming Multi-core CPUs
1 Introduction to OpenMP

• Nowadays, multi-core architecture is well spread in High Performance
Computing (HPC) and in embedded targets

• There are two main ways to use multi-core architectures
1. Create multiple processes (= distributed memory model)
: MPI standard, Unix inter-processes communications, sockets, ...

2. Create multiple threads (= shared memory model)
: Threads POSIX, OpenMP, ...

• In this session we will not talk about the multiple processes model

• And we will go deeper into the multi-threaded model

1/46

OpenMP Presentation
1 Introduction to OpenMP

• OpenMP is a language dedicated to setup multi-threaded codes
• It is based on compiler directives (#pragma)

— Those directives describe how to perform the parallelism
— The main advantage of directives is to not modify sequential code (in

theory...)

1 void add_vectors(const float* A, const float* B, float* C, const size_t n)
2 {
3 # pragma omp parallel // directive for the creation of a parallel zone (= threads creation)
4 { // <- beginning of the parallel zone
5 # pragma omp for // directive for distribution of for-loop indices among threads
6 for (size_t i = 0; i < n; i++)
7 C[i] = A[i] + B[i];
8 } // <- end of the parallel zone
9 }

Simple add vectors OpenMP implementation
2/46

Fork-join Model
1 Introduction to OpenMP

• When using #pragma omp parallel directive: threads are created (= fork)
• At the end of a parallel zone

— Threads are destroyed (= join), except for the master thread
— There is an implicit barrier 3/46

Shared Memory Model
1 Introduction to OpenMP

• Each thread can access the global memory
zone

— This is called the shared memory (or the
RAM of the CPUs)

• But threads also own private data
— Not completely shared model
— Very often, the key for achieving

performance is to keep the memory
private when possible...

4/46

Shared Memory Model – Code Example
1 Introduction to OpenMP

1 void add_vectors(const float* A, const float* B, float* C,
2 const size_t n)
3 {
4 # pragma omp parallel
5 {
6 # pragma omp for
7 // 'i' is private because it is declared
8 // after the omp parallel directive
9 for (size_t i = 0; i < n; i++) // <- 'n' is shared

10 // 'A', 'B' and 'C' are shared!
11 C[i] = A[i] + B[i];
12 }
13 }

• By default, variables that are declared before a parallel zone are shared
(here A, B, C and n)

• And variables declared inside a parallel zone are private (here i)
5/46

Control Data Range
1 Introduction to OpenMP

• OpenMP provides data range control
— private: local to the thread,
— firstprivate: local to the thread and initialized
— shared: shared by all the threads, in C/C++ this

is the default behavior

• Here alpha is a constant, we can put it in the
private memory of each thread

• Efficient parallelism comes with minimal
synchronizations

— Shared data can generate a lot of synchronizations
— Privacy increases thread independence

1 void dot(const float* A,
2 float* B,
3 const float alpha,
4 const size_t n)
5 {
6 # pragma omp parallel \
7 shared(A, B) \
8 firstprivate(alpha, n)
9 {

10 # pragma omp for
11 // 'i' is still private because
12 // it is declared after the
13 // parallel zone
14 for (size_t i = 0; i < n; i++) {
15 B[i] = alpha * A[i];
16 }
17 }
18 }

6/46

for-loop Indices Distribution
1 Introduction to OpenMP

• for-loop indices distribution can be controlled by the schedule clause
— static: indices distribution is precomputed (at compilation time), and the

amount of indices is the same for each thread
— dynamic: indices distribution is done in real time along the loop execution, work

load balancing can be better than with the static scheduling but dynamic
scheduling costs some additional resources in order to attribute indices at real
time

• There are other types of scheduling but this is not a full OpenMP lesson

1 // ...
2 # pragma omp for schedule(static, 128) // we statistically attribute 128 per 128 indices to each threads
3 for(int i = 0; i < n; i++)
4 B[i] = alpha * A[i];
5 // ...

7/46

Go Further
1 Introduction to OpenMP

• Previous slides were a brief overview of the main OpenMP principles

• To have more precise informations you can take a look at the very good
OpenMP reference card1

— It could be a very good idea to print it and keep it ;-)

• In the next slides we will pay attention to some OpenMP use cases

1https://www.openmp.org/wp-content/uploads/OpenMPRef-5.0-111802-web.pdf
8/46

https://www.openmp.org/wp-content/uploads/OpenMPRef-5.0-111802-web.pdf

Table of Contents
2 OpenMP Use Cases

▶ Introduction to OpenMP

▶ OpenMP Use Cases

▶ Parallel Code Analysis

▶ Kernel Performance Analysis

▶ References

Avoid False Sharing
2 OpenMP Use Cases

• False sharing is a phenomena that occurs when threads write simultaneously
data in a same cache line

— Remember, the cache system works with lines of words: a line is the smallest
element in caches coherence mechanism

— If two or more threads are working on the same line they cannot write data
simultaneously!
: Stores are serialized and we talk about false sharing

• To avoid false sharing, threads have to work on a bigger amount of data than
the cache line size

— Concretely we have to avoid (static,1) or (dynamic,1) scheduling
— Cache lines are not very big (≈ 64 Bytes)
— Just putting a (static,16) or (dynamic,16) often resolves the problem

◦ Be aware that in some OpenMP implementations, the default scheduling pattern is (static,1)!

9/46

Threads Synchronizations – Barriers
2 OpenMP Use Cases

• In OpenMP there are a lot of implicit barriers, after each
— #pragma omp parallel directive
— #pragma omp for directive
— #pragma omp single directive

• But not after #pragma omp master directive!

• If we are sure that there is no need to synchronise threads after the #pragma
omp for directive, we can use the nowait clause

• Optimally we need only one #pragma omp parallel directive in a fully
parallel code

— OpenMP manages a pool of threads in order to reduce the cost of the #pragma
omp parallel directive but this is not free, each time OpenMP has to
reorganize the pool and wakes up the required threads

10/46

Threads Synchronizations – Barriers – Example
2 OpenMP Use Cases

1 // A, B & C <- size = n, D <- size = 2n
2 void kernel_v1(const float *A, const float *B, const float *C,
3 float *D, const float alpha, const size_t n) {
4 // overhead: threads creation and private variables creation
5 # pragma omp parallel shared(A, B, D) \
6 firstprivate(alpha, n)
7 {
8 # pragma omp for schedule(static,16)
9 {

10 for (size_t i = 0; i < n; i++)
11 D[i] = alpha * A[i] + B[i];
12 } // implicit barrier
13 } // implicit barrier
14
15 // overhead: threads attribution and private variables creation
16 # pragma omp parallel shared(A, C, D) firstprivate(n)
17 {
18 # pragma omp for schedule(static,16)
19 {
20 for (size_t i = 0; i < n; i++)
21 D[n + i] = A[i] + C[i];
22 } // implicit barrier
23 } // implicit barrier
24 }

11/46

Threads Synchronizations – Barriers – Example
2 OpenMP Use Cases

1 // A, B & C <- size = n, D <- size = 2n
2 void kernel_v1(const float *A, const float *B, const float *C,
3 float *D, const float alpha, const size_t n) {
4 // overhead: threads creation and private variables creation
5 # pragma omp parallel shared(A, B, D) \
6 firstprivate(alpha, n)
7 {
8 # pragma omp for schedule(static,16)
9 {

10 for (size_t i = 0; i < n; i++)
11 D[i] = alpha * A[i] + B[i];
12 } // implicit barrier
13 } // implicit barrier
14
15 // overhead: threads attribution and private variables creation
16 # pragma omp parallel shared(A, C, D) firstprivate(n)
17 {
18 # pragma omp for schedule(static,16)
19 {
20 for (size_t i = 0; i < n; i++)
21 D[n + i] = A[i] + C[i];
22 } // implicit barrier
23 } // implicit barrier
24 }

1 // A, B & C <- size = n, D <- size = 2n
2 void kernel_v2(const float *A, const float *B, const float *C,
3 float *D, const float alpha, const size_t n) {
4 // overhead: threads creation and private variables creation
5 # pragma omp parallel shared(A, B, C, D) \
6 firstprivate(alpha, n)
7 {
8 # pragma omp for schedule(static,16) nowait
9 {

10 for (size_t i = 0; i < n; i++)
11 D[i] = alpha * A[i] + B[i];
12 } // no implicit barrier (nowait clause)
13
14 # pragma omp for schedule(static,16)
15 {
16 for (size_t i = 0; i < n; i++)
17 D[n + i] = A[i] + C[i];
18 } // implicit barrier
19 } // implicit barrier
20 }
21
22 /* 'kernel_v2' is a better version than 'kernel_v1':
23 * - only one parallel zone
24 * - no barrier after the first loop (nowait clause) */

11/46

Threads Synchronizations – Critical Sections
2 OpenMP Use Cases

• Sometimes it is not possible to have a fully parallel code and some regions of
the code remain intrinsically sequential

• In OpenMP we can specify this kind of region with the
#pragma omp critical directive

• But we have to use this directive carefully
— #pragma omp critical can be the main cause of slow down in OpenMP codes!

12/46

Threads Synchros – Critical Sections – Example
2 OpenMP Use Cases

Scale A in B and find the minimum value of B in min_val

1 float kernel_v1(const float *A, float *B, const size_t n) {
2 float min_val = INF;
3 # pragma omp parallel shared(A, B, min_val) firstprivate(n)
4 {
5 # pragma omp for schedule(static,16)
6 {
7 for (size_t i = 0; i < n; i++) {
8 B[i] = 0.5f * A[i];
9 # pragma omp critical // we want to be sure that only one

10 { // thread can modify min_val
11 if (B[i] < min_val)
12 min_val = B[i];
13 }
14 }
15 }
16 }
17 return min_val;
18 }

13/46

Threads Synchros – Critical Sections – Example
2 OpenMP Use Cases

Scale A in B and find the minimum value of B in min_val

1 float kernel_v1(const float *A, float *B, const size_t n) {
2 float min_val = INF;
3 # pragma omp parallel shared(A, B, min_val) firstprivate(n)
4 {
5 # pragma omp for schedule(static,16)
6 {
7 for (size_t i = 0; i < n; i++) {
8 B[i] = 0.5f * A[i];
9 # pragma omp critical // we want to be sure that only one

10 { // thread can modify min_val
11 if (B[i] < min_val)
12 min_val = B[i];
13 }
14 }
15 }
16 }
17 return min_val;
18 }
19
20 /* This code is slow because each loop step contains a
21 * sequential part */

1 float kernel_v2(const float *A, float *B, const size_t n) {
2 float min_val = INF;
3 # pragma omp parallel shared(A, B, min_val) firstprivate(n)
4 {
5 # pragma omp for schedule(static,16)
6 {
7 for (size_t i = 0; i < n; i++) {
8 B[i] = 0.5f * A[i];
9 // no more threads synchro to perform the test

10 if (B[i] < min_val)
11 # pragma omp critical
12 { // this is very important to re-do the test because
13 // an other thread may have modify the min_val value
14 if (B[i] < min_val)
15 min_val = B[i];
16 }
17 }
18 }
19 }
20 return min_val;
21 }

13/46

Search Algorithms
2 OpenMP Use Cases

• In OpenMP 3 there is no optimal solution for search algorithms

• This kind of algorithm typically requires while-loops or do-while-loops

• However there is a tip to fix this lack in OpenMP 3 (see next slide)

• Latest versions of OpenMP (v4 and v5) provides better control of threads
— We can terminate threads...
— But this lead to more complex solutions, we will not see them today

14/46

Search Algorithms – OpenMP 3 Tip
2 OpenMP Use Cases

Search if val element is in the A array of size n

1 bool search_val_v1(const float *A, const size_t n, float val)
2 {
3 bool found = false;
4 # pragma omp parallel shared(A, found) firstprivate(val)
5 {
6 # pragma omp for schedule(static,16)
7 {
8 for (size_t i = 0; i < n; i++) {
9 if (A[i] == val) {

10 found = true;
11 break; // not valid in OMP, the compilation
12 // will fail
13 }
14 }
15 }
16 }
17 return found;
18 }

15/46

Search Algorithms – OpenMP 3 Tip
2 OpenMP Use Cases

Search if val element is in the A array of size n

1 bool search_val_v1(const float *A, const size_t n, float val)
2 {
3 bool found = false;
4 # pragma omp parallel shared(A, found) firstprivate(val)
5 {
6 # pragma omp for schedule(static,16)
7 {
8 for (size_t i = 0; i < n; i++) {
9 if (A[i] == val)

10 found = true; // no more break, this is valid but
11 // this is also slow, no more early
12 // exit :-(
13 }
14 }
15 }
16 return found;
17 }

15/46

Search Algorithms – OpenMP 3 Tip
2 OpenMP Use Cases

Search if val element is in the A array of size n

1 bool search_val_v1(const float *A, const size_t n, float val)
2 {
3 bool found = false;
4 # pragma omp parallel shared(A, found) firstprivate(val)
5 {
6 # pragma omp for schedule(static,16)
7 {
8 for (size_t i = 0; i < n; i++) {
9 if (A[i] == val)

10 found = true; // no more break, this is valid but
11 // this is also slow, no more early
12 // exit :-(
13 }
14 }
15 }
16 return found;
17 }

1 bool search_val_v2(const float *A, const size_t n, float val)
2 {
3 bool found = false;
4 # pragma omp parallel shared(A, found) firstprivate(val)
5 {
6 # pragma omp for schedule(static,16)
7 {
8 for (size_t i = 0; i < n; i++) {
9 if (!found) // we are doing nothing if we have found

10 // the value in the array
11 if (A[i] == val)
12 found = true;
13 }
14 }
15 }
16 return found;
17 }

15/46

Search Algorithms – OpenMP 3 Tip
2 OpenMP Use Cases

Search if val element is in the A array of size n

1 bool search_val_v1(const float *A, const size_t n, float val)
2 {
3 bool found = false;
4 # pragma omp parallel shared(A, found) firstprivate(val)
5 {
6 # pragma omp for schedule(static,16)
7 {
8 for (size_t i = 0; i < n; i++) {
9 if (A[i] == val)

10 found = true; // no more break, this is valid but
11 // this is also slow, no more early
12 // exit :-(
13 }
14 }
15 }
16 return found;
17 }

1 bool search_val_v2(const float *A, const size_t n, float val)
2 {
3 bool found = false;
4 # pragma omp parallel shared(A, found) firstprivate(val)
5 {
6 # pragma omp for schedule(static,16)
7 {
8 for (size_t i = 0; i < n; i++) {
9 if (!found) // we are doing nothing if we have found

10 // the value in the array
11 if (A[i] == val)
12 found = true;
13 }
14 }
15 }
16 return found;
17 }

15/46
Promises not to modify

the sequential

Promises not to modify
the sequential

code are not always kept...

code are not always kept...

Table of Contents
3 Parallel Code Analysis

▶ Introduction to OpenMP

▶ OpenMP Use Cases

▶ Parallel Code Analysis

▶ Kernel Performance Analysis

▶ References

Execution Time
3 Parallel Code Analysis

How do you compare two versions of a code that does the same thing
(from the functional point of view)?

• Compare the execution time of the two versions
— The fastest program is the most efficient one
— Intuitive and worth keeping in mind

• Be careful to compare the same times
— Classic error: comparing the total execution time of one program with just a

sub-part of another program’s execution time
: In this case, the two measured times are not comparable

16/46

Execution Time of a Parallel Code
3 Parallel Code Analysis

• Let’s consider D1 (or Ds) the sequential time (time on 1 core) of a code
— With 2 cores, we can hope to divide the time by 2 at best (Dm

2 ≥ Ds/2)
— With 3 cores, we can hope to divide the time by 3 at best (Dm

3 ≥ Ds/3)

• The following table shows the execution times measured for a Code 1:
core (C) Measured time (Dm) Optimal time (Do)

1 98 ms 98.0 ms
2 50 ms 49.0 ms
3 35 ms 32.7 ms
4 27 ms 24.5 ms
5 22 ms 19.6 ms
6 18 ms 16.3 ms

— Optimal time = Do = Ds/C
17/46

Visualization of the Execution Time
3 Parallel Code Analysis

• The previous table is not easy to read
• Let’s look at the results on a graph:

1 2 3 4 5 6

20

40

60

80

100 98

49

32
.7

24
.5

19
.6

16
.3

98

50

35

27

22

18

Number of cores

T
im

e
(m

s)
Optimal
Code 1

18/46

Speedup – Definition
3 Parallel Code Analysis

S = Ds/DC ,

with Ds the time measured for the 1-core version (= sequential version) of the code
and DC the time measured for the parallel version with C cores.

cores (C) Time (Dm) Speedup (S)
1 98 ms 1.00
2 50 ms 1.96
3 35 ms 2.80
4 27 ms 3.63
5 22 ms 4.45
6 18 ms 5.44

• Sequential time is used as reference time
19/46

Speedup – Visualization
3 Parallel Code Analysis

1 2 3 4 5 6

1

2

3

4

5

6

Number of cores

Sp
ee

du
p

Code 1
Optimal

• Visually very simple to see if Code 1 is close to the the optimal
• Optimal speedup is equal to the number of cores used (no more!)

20/46

Amdahl’s Law
3 Parallel Code Analysis

• Can we increase parallelism indefinitely to speedup our codes?
— Amdahl said no!
— To be more precise, it depends on the characteristics of the code...
— If the code is fully parallelizable: speedup is infinite
— If the code is NOT fully parallelizable: there’s a limit

Smax = 1
1 − fDp

,

with Smax the maximum achievable speedup and fDp the fraction of parallel time
in the code (0 ≤ fDp ≤ 1).

21/46

Amdahl’s Law – Example
3 Parallel Code Analysis

• Let’s take a code composed of two parts:
— 20 % is intrinsically sequential
— 80 % can be parallelized

• What is the maximum achievable speedup?

Smax = 1
1 − fDp

= ...

That’s not much when you consider architectures with dozens of CPU
cores!

22/46

Amdahl’s Law – Example
3 Parallel Code Analysis

• Let’s take a code composed of two parts:
— 20 % is intrinsically sequential
— 80 % can be parallelized

• What is the maximum achievable speedup?

Smax = 1
1 − fDp

= 1
1 − 0.8 = 1

0.2 = 5.

That’s not much when you consider architectures with dozens of CPU
cores!

22/46

Amdahl’s Law – Example
3 Parallel Code Analysis

• Let’s take a code composed of two parts:
— 20 % is intrinsically sequential
— 80 % can be parallelized

• What is the maximum achievable speedup?

Smax = 1
1 − fDp

= 1
1 − 0.8 = 1

0.2 = 5.

That’s not much when you consider architectures with dozens of CPU
cores!

22/46

Efficiency – Definition
3 Parallel Code Analysis

• Several ways to define the efficiency (E) of a code
— From the speedup: E = Sm/So

— From the execution time: E = Dm/Do

• Efficiency is a ratio: 0% < E ≤ 100%
• For Code 1, the efficiency as a function of the number of cores:

cores (C) Time (Dm) Speedup (S) Efficiency (E)
1 98 ms 1.00 100%
2 50 ms 1.96 98%
3 35 ms 2.80 93%
4 27 ms 3.63 91%
5 22 ms 4.45 89%
6 18 ms 5.44 91%

23/46

Efficiency – Visualization
3 Parallel Code Analysis

1 2 3 4 5 6
88%

90%

92%

94%

96%

98%

100%

Number of cores

Effi
ci

en
cy

Code 1
Optimal

• Equivalent to the speedup, at least for now...
24/46

Scalability of a Code – Definition
3 Parallel Code Analysis

• The scalability of a code is its capacity to be efficient when the number of
cores increases

— A code scales if it is able to benefit from the power of several cores

• How do we measure a code’s scalability? How do we know if a code doesn’t
scale?

— No simple answer

• 2 widely used models for characterizing the scalability of parallel code:
— The “strong” scalability
— The “weak” scalability

25/46

Strong Scalability – Code 1 Example
3 Parallel Code Analysis

• Measures execution time as a function of the number of cores

• With a constant problem size

• For example, for Code 1, with a problem of size 100:

cores Size Time Speedup
1 100 98 ms 1.00
2 100 50 ms 1.96
3 100 35 ms 2.80
4 100 27 ms 3.63
5 100 22 ms 4.45
6 100 18 ms 5.44

26/46

Strong Scalability – Code 1 Visualization
3 Parallel Code Analysis

Strong scalability is generally observed on an speedup graph:

1 2 3 4 5 6

1

2

3

4

5

6

Number of cores

Sp
ee

du
p

Code 1
Optimal

Here, for 6 cores, Code 1 achieves a speedup of 5.4, so we can conclude that this
code scales well up to 6 cores.

27/46

Strong Scalability – Code 2 Example
3 Parallel Code Analysis

• Let’s consider a new Code 2

• Here are the measurements for this code:

cores Size Time Speedup
1 100 98 ms 1.00
2 100 50 ms 1.96
3 100 35 ms 2.80
4 100 32 ms 3.06
5 100 30 ms 3.27
6 100 33 ms 2.97

28/46

Strong Scalability – Code 2 Visualization
3 Parallel Code Analysis

1 2 3 4 5 6

1

2

3

4

5

6

Number of cores

Sp
ee

du
p

Code 1
Optimal

• We can see that the strong scalability of Code 2 is poor

• Above a certain number of cores, parallelism can no longer speedup code :-(
29/46

Weak Scalability
3 Parallel Code Analysis

• This model considers the execution time as a function of the number of cores

• And the problem size increases in proportion to the number of
cores!

• Compute the speedup makes no sense if the problem size is not constant

• BUT it is possible to compute the efficiency: E = Ds/Dm

Intuition: if we can’t compute a problem of a given size any faster, can we
compute a bigger problem in the same time?

Most of the time, yes, and it’s easier! This is what happens most of the time in
high performance computing: scientific models become more and more refined =
the size of the problem increases.

30/46

Weak Scalability – Code 2 Example
3 Parallel Code Analysis

Measures for Code 2:

cores Size Time Efficiency
1 100 098 ms 100%
2 200 100 ms 98%
3 300 101 ms 97%
4 400 105 ms 93%
5 500 109 ms 90%
6 600 111 ms 88%

1 2 3 4 5 6

90%

95%

100%

Number of cores

Effi
ci

en
cy

Code 2
Optimal

• The weak scalability of Code 2 is good (≈ 90% for 6 cores)
• Why is strong scalability bad?

— Amdahl’s law: not enough parallelism for a small problem size
31/46

Strong Scalability – Code 2 AGAIN!
3 Parallel Code Analysis

• New problem size: 600

cores Size Time Speedup
1 600 611 ms 1.00
2 600 308 ms 1.98
3 600 210 ms 2.91
4 600 162 ms 3.77
5 600 133 ms 4.59
6 600 111 ms 5.50 1 2 3 4 5 6

1

2

3

4

5

6

Nombre de cœurs

Sp
ee

du
p

Code 2
Optimal

• For larger problem sizes, strong scalability is good
• Not always possible to test for strong scalability: lack of time
• Not always possible to test for low scalability: impossible to have ever larger

problem sizes 32/46

Table of Contents
4 Kernel Performance Analysis

▶ Introduction to OpenMP

▶ OpenMP Use Cases

▶ Parallel Code Analysis

▶ Kernel Performance Analysis

▶ References

Number of Arithmetic Operations
4 Kernel Performance Analysis

• The number of arithmetic operations in a code is an important
characteristic

• Example of the number of float operations (flops) in a kernel that performs a
sum:

1 float sum(float *values, size_t n) {
2 float sum = 0.f;
3
4 // total flops = n * 1
5 for (size_t i = 0; i < n; i++)
6 sum = sum + values[i]; // 1 flop because of the addition
7
8 return sum;
9 }

33/46

Number of Operations per Second
4 Kernel Performance Analysis

• Metric widely used in high performance computing, particularly the number of
floating-point operation per second (flop/s)

— The same is defined for integer operation (iop/s)
— Or simply the number of operation per second (op/s), or Million Instructions

Per Second (MIPS)
: This metrics is used in the kernel Linux (cat /proc/cpuinfo)

• The flop/s ratio can be directly compared with the peak performance of a
computing architecture

• A metric to estimate the good use (or not) of the hardware architecture

34/46

Processor Peak Performance
4 Kernel Performance Analysis

• The processor’s maximum computational capacity

• It can be deduced from our knowledge of the hardware architecture:

peakPerf = nOps × freq × nCores,

with nOps the number of operations the architecture can achieve in one cycle
(ILP), freq the processor frequency and nCores the number of processor cores.

35/46

Processor Peak Performance – Example
4 Kernel Performance Analysis

CPU name Core i7-2630QM
Architecture Sandy Bridge

Vect. inst. AVX-256 bit (4 double, 8 single)
Frequency 2 GHz
Nb. cores 4

Peak performance in floating-point single precision:

peakPerfsp = nOps × freq × nCores = (2 × 8) × 2 × 4 = 128 Gflop/s

Peak performance in floating-point double precision:

peakPerfdp = nOps × freq × nCores = (2 × 4) × 2 × 4 = 64 Gflop/s

• nOps = 2 × vectorSize because the architecture back-end allows to issue 2
instructions par cycle (vadd et vmul)

36/46

Arithmetic Intensity
4 Kernel Performance Analysis

• Sometimes (even often) measured op/s are far from peak performance
— Code is poorly optimized
— Peak performance cannot be achieved
— In most cases, both are true...

• With arithmetic intensity we take into account memory accesses:

AI = ops

memops
.

37/46

Arithmetic Intensity – Example
4 Kernel Performance Analysis

1 float sum(float *values, size_t n) {
2 float sum = 0.f; // do not count the memory acces to 'sum' because it will be optimized in register
3 // total flops = n * 1 || total memops = n * 1
4 for (size_t i = 0; i < n; i++)
5 sum = sum + values[i]; // 1 flop because of the addition, 1 memop because of one acces in
6 // the 'values' array
7 return sum;
8 }

• Arithmetic intensity of sum is: AIsum = n×1
n×1 = 1

• The higher the arithmetic intensity, the more the code is limited by
computational units

• The lower the arithmetic intensity, the more the code is limited by memory
accesses

38/46

Operational Intensity
4 Kernel Performance Analysis

• Compared to arithmetic intensity, operational intensity takes into account the
size of the data in memory:

OI = flops

memops × sizeOfData
= AI

sizeOfData
,

sizeOfData depends on the datatype, int and float use 4 bytes, long long int
and double use 8 bytes.

• In the previous code (sum), the memory accesses are made on float and the
operational intensity is: OIsum = n×1

(n×1)×4 = 1
4

39/46

Operational Intensity – Example
4 Kernel Performance Analysis

Sum in single precision:

1 // AI = 1 || OI = 1/4
2 float sum1(float *values, size_t n) {
3 float sum = 0.f;
4 for (size_t i = 0; i < n; i++)
5 sum = sum + values[i];
6 return sum;
7 }

Sum in double precision:

1 // AI = 1 || OI = 1/8
2 double sum2(double *values, size_t n) {
3 double sum = 0.0;
4 for (size_t i = 0; i < n; i++)
5 sum = sum + values[i];
6 return sum;
7 }

• sum1 and sum2 kernels have the same arithmetic intensity

• The operational intensity of sum1 is higher than that of sum2
— sum2 kernel is more limited by memory access than sum1 kernel

40/46

Roofline Model
4 Kernel Performance Analysis

• Roofline1 is model that limits the maximum achievable performance

• Takes into account
— Memory bandwidth (RAM)
— Processor peak performance

• Depending on operational intensity, code is limited either by memory
bandwidth or by processor peak performance

Attainable op/s = min
{

Peak CPU op/s performance,

Peak memory bandwidth × OI.

1S. Williams, A. Waterman, and D. Patterson. “Roofline: An Insightful Visual Performance Model for
Multicore Architectures”. In: ACM Communications 52.4 (Apr. 2009), pp. 65–76. doi: 10.1145/1498765.1498785.

41/46

https://doi.org/10.1145/1498765.1498785

Memory Bandwidth Measurement
4 Kernel Performance Analysis

• Memory bandwidth or memory throughput represents the number of bytes
that can be read/written from RAM in one second (o/s or GB/s)

• How to know the memory bandwidth?
— It is possible to compute its theoretical value
— But we often prefer to use a micro-benchmark program: “STREAM”1 or

“bandwidth”2

• STREAM (University of Virginia) is a small, relatively simple code for
measuring memory bandwidth → C code

• bandwidth (Sorbonne University) targets the same features as STREAM but
in a more friendly-user and accurate way → C++ code

1STREAM: https://www.cs.virginia.edu/stream/
2bandwidth: https://github.com/alsoc/bandwidth

42/46

https://www.cs.virginia.edu/stream/
https://github.com/alsoc/bandwidth

Roofline Model – Example – Part 1
4 Kernel Performance Analysis

Let’s take the same processor as before:

CPU name Core i7-2630QM
Peak perf sp 128 GFlop/s
Peak perf dp 64 GFlop/s

Mem. bandwidth 17.6 GB/s

Single precision sum:

1 // AI = 1 || OI = 1/4
2 float sum1(float *values, size_t n) {
3 float sum = 0.f;
4 for (size_t i = 0; i < n; i++)
5 sum = sum + values[i];
6 return sum;
7 }

Double precision sum:

1 // AI = 1 || OI = 1/8
2 double sum2(double *values, size_t n) {
3 double sum = 0.0;
4 for (size_t i = 0; i < n; i++)
5 sum = sum + values[i];
6 return sum;
7 }

43/46

Roofline Model – Example – Part 2
4 Kernel Performance Analysis

Peak perf sp 128 GFlop/s
Peak perf dp 64 GFlop/s

Mem. bandwidth 17.6 GB/s

For sum1, operational intensity is: OIsum1 = 1/4.
Let’s apply the Roofline model:

Attainable Gflop/s = min
{

Peak floating point performance,

Peak memory bandwidth × OI.

⇒

Attainable Gflop/ssum1 = min
{

128 Gflop/s,
17.6 × 1

4 Gflop/s.
= 4.4 Gflop/s

44/46

Roofline Model – Example – Part 2
4 Kernel Performance Analysis

Peak perf sp 128 GFlop/s
Peak perf dp 64 GFlop/s

Mem. bandwidth 17.6 GB/s

For sum2, operational intensity is: OIsum2 = 1/8.
Let’s apply the Roofline model:

Attainable Gflop/s = min
{

Peak floating point performance,

Peak memory bandwidth × OI.

⇒

Attainable Gflop/ssum2 = min
{

64 Gflop/s,
17.6 × 1

8 Gflop/s.
= 2.2 Gflop/s

44/46

Roofline Model – Example – Visualization
4 Kernel Performance Analysis

1/4

1/2

1

2

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8 16 32 64 128

A
tt

e
ig

n
a

b
le

 G
fl
o

p
/s

Operational intensity

The Roofline for Intel Core i7−2630QM

4.4 Gflop/s

2.2 Gflop/s
Roofline SP
Roofline DP

sum1 SP
sum2 DP

45/46

Roofline Model – Example – Visualization
4 Kernel Performance Analysis

1/4

1/2

1

2

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8 16 32 64 128

A
tt
e
ig

n
a
b
le

 G
fl
o
p
/s

Operational intensity

The Roofline for Intel Core i7−2630QM

4.4 Gflop/s

2.2 Gflop/s
Roofline SP
Roofline DP

sum1 SP
sum2 DP

• There are two different Rooflines
— One for computations in single precision
— The other for computations in double precision

• Here it is clear that sum1 and sum2 are limited by the memory bandwidth
45/46

Q&A
Thank you for listening!

Do you have any questions?

Bibliography
5 References

[1] S. Williams, A. Waterman, and D. Patterson. “Roofline: An Insightful Visual Performance Model for
Multicore Architectures”. In: ACM Communications 52.4 (Apr. 2009), pp. 65–76. doi:
10.1145/1498765.1498785.

46/46

https://doi.org/10.1145/1498765.1498785

	Introduction to OpenMP
	OpenMP Use Cases
	Parallel Code Analysis
	Kernel Performance Analysis
	References

