Intro to Modern Programmable Architectures
Focus on Single-core CPU

Sorbonne Université — Master SEST - MUSIN60 — Parallel Programming

Adrien CASSAGNE

September 18, 2023

mailto:adrien.cassagne@lip6.fr

Table des matiéres

1 Introduction

» Introduction

Presentation

1 Introduction

e 6 ECTS, 11 sessions of 4 hours:

6 sessions of classroom lectures (6 x 2h)
6 sessions of hands-on works (6 x 2h)

4 sessions of a project (4 x 4h)

1 session for the presentations (1 x 4h)

e Main objectives:

— Program efficiently the CPUs and GPUs

Understand modern general purpose
processor architectures (CPU & GPU)

Learn the theory to upper-bound the
expected performance benefit

o Take away:
1. CPU programming

o Scalar optimizations
o SIMD instructions
o Multi-threading

2. GPU programming

o Concepts
o OpenCL language

3. Performance analysis

o Speedup
o Efficiency
o Roofline model

e Sessions in English

1/68

Prerequisites

1 Introduction

e Strong basis in C programming e Some knowledge about computers
_ Pointers architecture
— Structures — Central Unit Processor (CPU)
— Compilation and Makefile — RAM, Caches, Bus
— .. — Main principles of assembly prog.
¢ Few basis in C++4 programming e Some knowledge about Linux OS
— Standard Template Library — Command line
— Ex.: std::vector<T> — Memory pagination and space
— Templating over the data types — Unix processes and threads

2/68

Target Parallel & Embedded Architecture

1 Introduction

e NVIDIA Jetson TX2 development kit

— CPU: 6 cores

— GPU: 256 cores

— RAM: 8 GB shared between CPU & GPU

— Embedded in cars, satellites, video game
consoles (Switch), medical equipment, ...

e 15 available boards (max. 2 students per board)

o Hands-on and project sessions on the same target!

3/68

Application Framework

1 Introduction

e Hands-on sessions with
EasyPAP framework

e C and C++ languages

¢ Visualization of the
results

¢ Monitoring of the
performance

e Focus on what really
matters

4/68

Mysterious Project

1 Introduction

e Surprise!
e Choose ProgPar to find out
more...

5/68

Mysterious Project

1 Introduction

e Surprise!
e Choose ProgPar to find out
more...

e Oh but you already chose ProgPar,
be patient you will see later ;-)

5/68

Table des matiéres

2 Programmable Architectures

» Programmable Architectures

Simplified CPU architecture — Part 1

2 Programmable Architectures

e Compute units and memory

— Memory is used to load and store data
— Compute units are used to transform data

Processor Random Acces Memory (RAM)
load

Memory

store

6/68

Simplified CPU architecture — Part 2

2 Programmable Architectures

e More precisely, in a CPU there are:

— Control units (if, goto, instructions placement, ...)
— Logic units, LU (==, =, >, <, ...)
— Arithmetic units, AU (4, *, —, /, ...)

Processor Random Acces Memory (RAM)

memory

7/68

CPU Architecture: Cycle, Freq. and
Throughput

2 Programmable Architectures

o A tick of the clock = a cycle
e In each cycle, the CPU performs an elementary task

o Frequency = number of cycles per second (in Hertz)

8/68

CPU Architecture: Cycle, Freq. and
Throughput

2 Programmable Architectures

A tick of the clock = a cycle
In each cycle, the CPU performs an elementary task

Frequency = number of cycles per second (in Hertz)

Modern CPU/RAM frequency: between 1 GHz and 4 GHz (1 GHz = 10° Hz)

Memory throughput (RAM) ~ 50 GB/s (DDR5)

CPU capable of consuming/producing data at ~ 5 TB/s (i9-9900K)

— The CPU is much faster (x100) !
— How can we solve this problem?

8/68

CPU Architecture: Memory Hierarchy — Part 1

2 Programmable Architectures

Observation: most applications often reuse the same data

9/68

CPU Architecture: Memory Hierarchy — Part 1

2 Programmable Architectures

Observation: most applications often reuse the same data

e Faster memory between CPU and RAM = Cache memory

— Faster memory is more expensive and takes up physical space
— This memory (= cache) is much smaller than RAM
— 3 levels of cache (in the processor):

o L1, the fastest and smallest (32 KB), access time & 2 cycles

o L2, slower than L1 but larger (1 MB), access time ~ 10 cycles

o L3, slower than L2 but larger (4 MB), access time ~ 30 cycles

— RAM access latency = 100 cycles

9/68

CPU Architecture: Memory Hierarchy — Part 2

2 Programmable Architectures

e Scenario: first load of a data from memory

Processor Random Acces Memory (RAM)

load

memory

Loading data from RAM: ~ 100 cycles

10/68

CPU Architecture: Memory Hierarchy — Part 2

2 Programmable Architectures

e Scenario: first load of a data from memory

Processor

Random Acces Memory (RAM)

memory

Loading data from RAM: ~ 100 cycles

10/68

CPU Architecture: Memory Hierarchy — Part 3

2 Programmable Architectures

o Scenario: load the same data (= second load) from memory

Processor ~ Random Acces Memory (RAM)

1
1
1
1
1
1
: - memory
1
1
1
1
1
1

Loading data from L1 cache: 1-2 cycles

11/68

CPU Architecture: Memory Hierarchy — Part 3

2 Programmable Architectures

o Scenario: load the same data (= second load) from memory

Processor ~ Random Acces Memory (RAM)

1
1
1
1
1
1
: - memory
1
1
1
1
1
1

Loading data from L1 cache: 1-2 cycles

e This is the principle of temporal locality

11/68

CPU Architecture: Memory Hierarchy — Part 4

2 Programmable Architectures

e Scenario: store data to memory

e Two possible modes:
— Write-through

o “Possibly simpler” to implement in hardware
o Write to both RAM and cache
o Choice made in some embedded architectures

— Write-back
o “More complicated” to implement in hardware (cache coherence protocol)
o Write to cache and write to RAM only if data is invalidated from smaller/faster cache
o Writing to RAM less often = consuming less energy
o The choice made by the majority of architectures (computer, HPC, embedded)

12/68

CPU Architecture: Spatial Locality

2 Programmable Architectures

One cache line = a certain amount of data (e.g. 128-512 bits)
The smallest packet of data moving between RAM and CPU is a cache line
It’s more interesting to access data contiguously!

Otherwise, part of the data coming from RAM will be unused (= loss of
bandwidth).

13/68

CPU Architecture: Spatial Locality

2 Programmable Architectures

One cache line = a certain amount of data (e.g. 128-512 bits)
The smallest packet of data moving between RAM and CPU is a cache line
It’s more interesting to access data contiguously!

Otherwise, part of the data coming from RAM will be unused (= loss of
bandwidth).

Using data in the same cache line is called spatial locality!

13/68

CPU Architecture: SIMD instructions

2 Programmable Architectures

e Scalar instruction: produces data during 1 cycle

a:

e SIMD instruction: produces n data during 1 cycle

SH\ID 7“b

o SIMD instructions operate on so-called “vector registers”.
14/68

CPU Architecture: Multi-core

2 Programmable Architectures

Multi-core processor

Core 0 Core 1

e Modern CPUs are now all multi-core

e Generally, L1 and L2 caches are
dedicated to a single core.

e Cores share the Last Level Cache

(L1 or L =D
oo

Core 2 Core 3

15/68

Co-processors

2 Programmable Architectures

Hardware physically separated from the
CPU (or not on today’s SoCs...).

Often connected to the CPU via the
PCI-Express bus

Has its own RAM (global memory) (but not
always...)

Examples of co-processors

— Graphics Processing Unit (GPU)
— Field-Programmable Gate Array (FPGA)
— Many Integrated Cores (MIC)

Bus (UPI)

memory (RAM)

Processor

Bus (PCI-Express)

o . Fast bus
[l Compute units [global memory
h

Co-processors

16/68

GPU Architecture

2 Programmable Architectures

e Originally designed for image processing

o Massively parallel architecture

e Fewer control units than CPUs, but more compute units

o Global memory faster than CPU RAM (~ 500 GB/s)

o Performance/power consumption ratio generally better than CPUs
o Often suitable for scientific computing

o Hardware acceleration units for Al (tensor cores)

17/68

GPU Architecture: Nvidia

2 Programmable Architectures

Rogieter ik (163841 3249 Rogietr Fil (16384 32.)

Regietr Flo (16,384 32.)

TENSOR
CORE

~ RTCORE

Supercomputer architecture

2 Programmable Architectures

|

Noded Node5 Node 6 Node 7°

o A very simplistic supercomputer
o Interconnecting computers with a star network (switch)

e Theoretical maximum performance is 8 times that of a node
19/68

Table des matieres
3 Single-core CPU Architecture

» Single-core CPU Architecture

Pipeless Processor
3 Single-core CPU Architecture

e Generally, an instruction can be divided into several sub-steps:

1. Fetch (IF) : the instruction is copied from memory
2. Decode (ID) : the instruction is interpreted by the CPU
3. Ezecute (EX) : the instruction is executed

e On a processor WITHOUT pipeline, this corresponds to:

e Cycle 1 and cycle 2 take 6 units of time to complete

20/68

Pipelined Processor — Part 1
3 Single-core CPU Architecture

e From what we’ve just seen, it’s possible to divide an instruction into 3
sub-instructions (uop)

e We assume that each sub-instruction takes the same amount of time

e On a pipelined processor, this corresponds to:

1507 |27 Cycle 2

Time
e Cycle 1, cycle 2 and cycle 3 take 5 units of time to complete
o 3-stage pipeline (IF, ID and EX can run in parallel)

Cycle 1

21/68

Pipelined Processor — Part 2
3 Single-core CPU Architecture

o It takes some time before the pipeline is optimal
— This is called pipeline latency (2 cycles here)

o If latency is not taken into account, a 3-stage pipeline is 3 times faster

e Yellow: the time point at which the pipeline is optimal

IF1§ID1 Cycle 1

Time

22/68

Pipelined Processor — Part 3
3 Single-core CPU Architecture

Today’s processors have pipelines of 10 to 20 stages, but the principle remains
the same

There is a mechanism so that the preceding instruction can directly pass its
result to the following instruction (register latch + forwarding)

Pipeline seems effective, but what happens if you have conditions (e.g. if)?
— In this case, it’s problematic: the processor can’t know what the next instruction
will be, which is bad to pipeline efficiency (it creates “bubbles”).
— There are branch prediction mechanisms to limit this effect...

23/68

Super-scalar Processor
3 Single-core CPU Architecture

e The ability of a processor to execute
several instructions in parallel
— Instruction Level Parallelism (ILP)
— Processors are generally 3- to 10-wide
super-scalar

e This means that a CPU is capable of
executing more than one instruction per
cycle (3 to 10 instructions)

— The example on the right shows a
processor with an ILP of 2 and a 3-stage
pipeline

— For instance, a processor can compute 1
multiplication and load data from
memory in 1 cycle

Out-of-Order (O00O) Execution

3 Single-core CPU Architecture

e Most processors are now capable of executing instructions out of order
(different order than the one given by the assembler code)

— This maximizes the use of CPU units during a cycle (e.g. super-scalar processor).
— It is difficult to predict the order in which the processor will execute instructions

e Here’s a code example to illustrate:

1 inta=1, b=2, ¢c=3,d=4, e =
2 ¢c=a+b; // 1st instruction to be
3 e=c *d; // 3rd instruction to be
4 h=1£ % g; // 2nd instruction to be

5, £f =6,

erecuted,
erecuted,
erecuted,

g =7, h=28;
1t depends on nothing

00

it depends on 'c

7t depends on nothing

25/68

Out-of-Order (O00O) Execution

3 Single-core CPU Architecture

e Most processors are now capable of executing instructions out of order
(different order than the one given by the assembler code)

— This maximizes the use of CPU units during a cycle (e.g. super-scalar processor).
— It is difficult to predict the order in which the processor will execute instructions

e Here’s a code example to illustrate:

1 inta=1, b=2, ¢c=3,d=4, e =
2 c=a+b; // 1st instruction to be
3 e=c *d; // 3rd instruction to be
4 h=1£ % g; // 2nd instruction to be

5, £f =6,

erecuted,
erecuted,
executed,

g=7, h=38;

it depends on nothing
it depends on 'c
7t depends on nothing

'

25/68

Out-of-Order (O00O) Execution

3 Single-core CPU Architecture

e Most processors are now capable of executing instructions out of order
(different order than the one given by the assembler code)

— This maximizes the use of CPU units during a cycle (e.g. super-scalar processor).
— It is difficult to predict the order in which the processor will execute instructions

e Here’s a code example to illustrate:

1 inta=1, b=2, ¢c=3,d=4, e =
2 c=a+b; // 1st instruction to be
3 e=c *d; // 3rd instruction to be
4 h=1£ % g; // 2nd instruction to be

5, £f =6,

erecuted,
ezecuted,
erecuted,

g=7, h=38;

it depends on nothing
it depends on 'c
7t depends on nothing

'

25/68

Apple Silicon M1 Micro-architecture (2020)

3 Single-core CPU Architecture

@ OZKE R (Herirf)re‘t;f::ons) A[?[@[l@ Aﬂ@
Firestorm

8-Wide Decode

Dispatch / Commit
~630 Reorder-Buffer

INT Rename FP Rename
PRF ~354?? Entries PRF ~384?? Entries

=
e
+
)
=
7
<
a
e

“ioee STQ

256pg 3072pg

L1-DTLB L2-TLB

NANANDIECH 128KB L1D

26/68

Intel Alder Lake Micro-architecture (2021)

3 Single-core CPU Architecture

ITLB + I-Cache

Decode

Hop Queue

1.25MB/2MB ML Cache

|
d

port | pont
o | n

TNew

Performance
x86 Core

A Step Functionin CPU Architecture
Performance For the Next Decade of
Compute

A significant IPC boost at high power efficiency

'\;Vider Eeeper Emarter

Better supports large data set and large code footprint applications
Enhanced power management improves frequency and power
Machine Learning Technology: Intel® AMX — Tile Multiplication

Allin atailored scalable architecture to serve the
full range of Laptops to Desktops to Data Centers

Intel Alder Lake Micro-architecture (2021)

3 Single-core CPU Architecture

Front-End Emarter

Fetch instructions and decodes them into pops Improved branch prediction accuracy
Srarter code prefetch mechanism

Large Code

= 128256 4KITLB, 1632 2M/4M TLB
= Enhanced code prefetch

= 5K—12K branch targets

Wider 2 -

= 168328 ength decode pS

= 4-6decoders * 225K—4K pops:

= 68 uop/cye from pop$ X increased hit-rate
w012 T # increased Frontend BW

— =
Hop Queue

g @ = 70> 72entries per thread
= 70 144 single thread

Intel Alder Lake Micro-architecture (2021)

3 Single-core CPU Architecture

Out of Order Engine

Track pop dependencies and dispatch ready pops to execution units

Wider
5 - 6 wide allocation
10 = 12 execution ports

Deeper
512-entry Reorder-Buffer and larger
Scheduler sizes

Smarter
More instructions “executed” at
rename/ allocation stage

What About our New Toy?

3 Single-core CPU Architecture

e Nvidia Jetson TX2 development kit
— 2x very powerful Nvidia “Denver 2” cores @ 2.04 GHz

o Specific for performance applications

— 4x powerful ARM “Cortex A57” (Big) cores @ 2.04 GHz

o Generally used in smartphones

— Weird heterogeneous design
o Classic ARM architectures combine A57 (Big) with A53 (LITTLE)

— No energy efficient cores (LITTLE)

30/68

Cortex A57 (2015)

3 Single-core CPU Architecture e ——

Non-Processor Cortex-A57 Processor Core
ILevel 2

Branch Prediction

. H =
i E | _— _—
} . . FH 3 Fiine
o 18-stage pipeline . E Nl ;
e 3-way decoder il
Zaslel i i L
o 8-wide super-scalar (uops) k| i =l
i
N 52|
¢ Out-of-order execution =
e Source: Anandtech
o

A U7 pat Cache
\2R5 2¢
| G

48-01t Virtual Address
4401 Physical Address

Wissser
128 SRR pign [Retrement sur |

31/68

https://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review/5

3 Single-core CPU Architecture

15-stage pipeline
2-way decoder
7-wide super-scalar (pops)
In-order execution
— ARM code is translated
by a hardware translator
— Can be considered as
out-of-order...
Sources:
— weccftech
— WikiChip
— Wikipedia

Nvidia Denver 2 (2016)

DENVER CPU

f CPU

7-wide superscalar
Aggressive HW prefetcher

pi
000 execution without the power

32/68

https://wccftech.com/nvidias-64bit-denver-cpu-architecture-details-unveiled-dual-custom-armv8-cores-clocked-250-ghz/
https://en.wikichip.org/wiki/nvidia/microarchitectures/denver
https://en.wikipedia.org/wiki/Project_Denver

Nvidia Jetson TX2: Cores and Caches Topology

3 Single-core CPU Architecture

|

|

Machine (7860MB of RAM)
Package P#1(4x Cortex A57) Package P#0 (2x Denver 2)
I L2 (2048KB) I L2 (2048KB)
I L1d (32KB) | I L1d (32KB) | I L1d (32KB) | I L1d (32KB) I L1d (64KB) | I L1d (64KB) |
I L1i (48KB) | I L1i (48KB) | I L1i (48KB) | I L1i (48KB) I L1i (128KB) | I L1i (128KB) |
Core P#0 Core P#1 Core P#2 Core P#3 Core P#0 Core P#1
| PU P#0 | | PU P#3 | | PU P#4 | | PU P#5 | | PU P#1 | PU P#2 |

Host: tegrax2c

Indexes: physical
Date: Fri Aug 25 11:54:52 2023

Topology from hwloc-1s
33/68

Table des matiéres

4 Single-core CPU Optimizations

» Single-core CPU Optimizations

Working with the Compiler

4 Single-core CPU Optimizations

e Compilers come with a number of options that allow you to optimize your
program automatically, thus reducing execution time

o In this course, we’ll be using the GNU C/C++ compiler (gcc, g++) or Clang
(clang, clang++), but similar options are available in other compilers

e It’s important to understand the optimizations that can and cannot be made
by the compiler!
— This maximizes the readability of the source code while maintaining efficiency
— This allows the compiler to apply some “dirty” optimizations on our behalf when
generating the binary code

34/68

Compiler: Optimization Options

4 Single-core CPU Optimizations

The most famous are (-0[1levell) :

-00 no optimization

-01 enables a series of optimizations to reduce binary size and execution time, while
keeping compilation time relatively low

-02 enables all possible optimizations (except those requiring a compromise between
efficiency and binary size), this option requires a longer compilation time than
-01

-03 optimizes even further, enables the following options: -finline-functions,
-funswitch-loops, -fpredictive-commoning, -fgcse-after-reload,
-ftree-loop-vectorize, -ftree-loop-distribute-patterns,
-ftree-slp-vectorize, -fvect-cost-model, -ftree-partial-pre and
-fipa-cp-clone

Source: https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

35/68

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Compilateur : quelques options spécifiques

4 Single-core CPU Optimizations

-finline-functions: enables automatic inlining, the compiler can choose
whether or not to inline (this option is not a guarantee)

-ftree-vectorize: enables automatic code vectorization

-ffast-math: does not take IEEE 754 specifications into account in float
calculations (risk of loss of precision = risk of bugs)

-funroll-loops: unrolls loops whose bounds are known at compile time.
This option makes the binary code larger, and does not necessarily improve
execution time

-march=native: enables instructions specific to the micro-architecture on
which the compiler is running, often necessary for code vectorization

36/68

Instruction Latency and Throughput

4 Single-core CPU Optimizations

e Here are the costs of the main arithmetic instructions on the Intel Skylake
micro-architecture

— add: latency of 4 cycles, throughput of 0.5 cycles per instruction (CPI)
— sub: latency of 4 cycles, throughput of 0.5 cycles per instruction (CPI)
— mul: latency of 4 cycles, throughput of 0.5 cycles per instruction (CPI)
— div: latency of 14 cycles, throughput of 4 cycles per instruction (CPT)
— Source: Intel Intrinsics Guide

e For add, sub and mul, the CPU can achieve 2 instructions per cycle!

o As you can see, division is much less efficient than multiplication (throughput
8 times lower)
— It is therefore interesting to compute the inverse and then multiply by the inverse
— Be careful, however, as this operation leads to a loss of precision in the
computations

37/68

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/

Division Example
4 Single-core CPU Optimizations

1 int divi(const float *A, float *B, const int n) {
2 for (int i = 0; i < n; i++)

3 B[i] = A[i] / 3.f;

4 }

e Number of theoretical cycles: n x 4

1 int div2(const float *A, float *B, const int n) {
2 float inv3 = 1.f / 3.f;

3 for (int i = 0; i < nj; i++)

4 B[i] = A[i] * inv3;

5 }

e Number of theoretical cycles: 4 +n x 0.5

38/68

Division Example — Assembly Code

4 Single-core CPU Optimizations

e Compiler: Clang 10.0.0 — Options: -01 -march=armv8-a+nosimd

1 divl 1 div2
2 cmp , #1 2 cmp , #1
3 b.1lt 3 b.1lt
4 mov . 4 mov , #43691
5 fmov , #3 5 mov o
6 .LBBO_2: // =>This Inner Loop Header: D=1 6 movk , #16042, #16
7 1ldr , [x0], #4 7 .LBBO_2: // =>This Inner Loop Header: D=1
8 subs s , #1 8 ldr , [x01, #4
9 fdiv . N 9 fmov)
10 str , [x1]1, #4 10 subs s , #1
11 b.ne 11 fmul N s
12 .LBBO_3: 12 str , [x11, #4
13 ret 13 b.ne
14 .LBBO_3:
15 ret

39/68

Special Functions

4 Single-core CPU Optimizations

o Here are the costs of some common mathematical functions (Intel Skylake):
— sqrt: latency of 12 cycles, throughput of 3 CPI
— rsqrt: latency of 4 cycles, throughput of 1 CPI
— pow, cos, sin, tan: very expensive, depends on software implementation, no
dedicated hardware unit
— Source: Intel Intrinsics Guide

e rsqrt has a throughput of one instruction per cycle!

— Surprisingly, this function is implemented in hardware
— Accuracy is generally lower than for other instructions
— Widely used for 2D /3D distance calculations

e pow, cos, sin and tan are very expensive, we must try to limit their use in
our codes

— Approximate functions are often available at lower cost
40/68

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/

Function Calls

4 Single-core CPU Optimizations

o A function call comes with an additional cost (passing parameters through
registers and/or the stack, jump instructions)

¢ Does this mean we shouldn’t make function calls?

— Sometimes it’s better to avoid
— It depends on where the function call is located

void stencil_1d_core(const float *A, float *B, comnst int i) {
B[i]l = A[i - 1] + A[i] + A[i + 1];
}

for (int i = 1; i < size -1; i++)

1

2

3

4

5 void stencil_1d(const float *A, float *B, const int size) {

6

7 stencil_1d_core(A, B, i); // ici on appelle la fonction trés souvent
8

41/68

Inlining
4 Single-core CPU Optimizations

e Inlining a function means replacing the function call with the function code
itself

— This eliminates the extra cost of calling the function

You can do it manually, but it’s not a good idea...

e It’s a better idea to have the compiler do it!
— Use of the keyword inline in the C/C++ language
— Compiler optimization option (-finline-function)

— In the code before the function declaration: __attribute__((inline))

42/68

stencil_1d_core:

stencil_

sbfiz
add

1d:
stp
stp

.LBB1_3:

1dp
ret

25

stencil_1d_core:
sbfiz
add

stencil_1d:
cmp
b.1t
sub
add
add
sub

.LBB1_2: // =>This
1dp
ldr
subs
fadd
fadd
str
b.ne

.LBB1_3:
ret

B

Inner Loop Header: D=1

s

#3

, #1
#8
#4
, #1

[x8, #-8]

[x8], #4

&

, #1

1, #4

e Compiler: Clang 10.0.0 — Options:

-02 -march=armv8-a+nosimd

43/68

Loop Unrolling

4 Single-core CPU Optimizations

Loop unwinding consists in increasing the loop pitch and adapting the loop
body to the loop pitch

Can sometimes be performed by the compiler (but not always...)

Several benefits

— Reduces time spent in loop control

— Reduces the risk of branch prediction error

— Increases optimization opportunities, potentially exposes more parallelism for
ILP, masks instruction latency

Some drawbacks
— Reduces code readability and increases the risk of bugs (not good for
maintainability)
— An epilogue (code after the loop) is often required

44/68

Loop Unrolling — Example

4 Single-core CPU Optimizations

.. . . Code with 2"d-order loop unrolling
Initial code without loop unrolling

void basic_loop2(const float *A,
const float *B,
const float *C,
const int n)

1
2
void basic_loopl(const float *A, 3
const float *B, 4
const float *C, 5 {
const int n) 6 for (i =0; i<mn;i+=2){

7 D[i + 0] = A[i + 0] + B[i + 0] + C[i + 0];

8 D[i + 1] = A[i + 1] + B[i + 1] + C[i + 1];

9 ¥

for (int i = 0; i < m; i++) {
D[i] = A[i] + B[i] + C[il;

1
2
3
4
5 {
6
7
8 ¥ 10 }
9

}

45/68

Loop Unrolling — Example

4 Single-core CPU Optimizations

.. . . Code with 2"d-order loop unrolling

Initial code without loop unrolling

void basic_loop2(const float *A,
const float *B,
const float *C,
const int n)

1
2
void basic_loopl(const float *A, 3
const float *B, 4
const float *C, 5 {
const int n) 6 for (i = 0; i <mn; i +=2) {
7 D[i + 0] = A[i + 0] + B[i + 0] + C[i + 0];
for (int i = 0; i < n; i++) { 8 D[i + 1] = A[i + 1] + B[i + 1] + C[i + 11;
D[i] = A[i] + B[i] + C[il; 9
¥ 10

}

1

2

3

4

5 {
6

7

8 ¥
9

}

o If we assume that n value is 3, then the code with unrolling is wrong!

45/68

Loop Unrolling — Example

4 Single-core CPU Optimizations

.. . . Code with 2"d-order loop unrolling
Initial code without loop unrolling
void basic_loop2(const float *A,
const float *B,
const float *C,
const int n)

1

2

void basic_loopl(const float *A, 3

const float *B, 4

const float *C, 5 {

const int n) 6 for (i =0;i< (m*2) /2;i+2) {
7 D[i + 0] = A[i + 0] + B[i + 0] + C[i + 0];
8

D[i + 1] = A[i + 1] + B[i + 1] + C[i + 11;

1

2

3

4

5 {
6 for (int i = 0; i < n; i++) {
7

8

)

D[i] = A[i] + B[i] + C[il; 9 1}
¥ 10 if (n % 2)
} 11 D[n - 1] = Aln - 1] + B[n - 1] + C[n - 1];
12}

o If we assume that n value is 3, then the code with unrolling is wrong!

e We nee to add an epilogue L10-11

45/68

-03

basic_loopl:
cmp
b.1t
mov w8, w
.LBB0_2: // =>This Inner Loop Header: Depth=1
ldr s0, [x0], #4
1dr s, [x1], #4
1dr s2, [x2], #4
subs
fadd
fadd

.LBBO_3:

e Compiler: Clang 10.0.0 — Options:

-march=armv8-a+nosimd -funroll-loops

o By default, the compiler does not
unroll the code even with
-funroll-loops

26

basic_loop2:

.LBBO_2:

.LBBO_3:

.LBBO_5:

subs
b.1t
mov
mov
add
add
add
add

// =>This Inner Loop Header: Depth=1
s0, [x13, #-4]
s1, [x12, #-4]
s2, [x11, #-4]

ldur
ldur
ldur
add
cmp

fadd

sbfiz

w8, wé, #1
.LBBO_3

x9, xzr
wl0, wé
x11, x2, #4
x12, x1, #4
x13, x0, #4
x14, x3, #4

x9, x9, #2
x9, x10

s0, s0, si
s0, s0, s2

s0, [x14, #-4]
s0, [x13], #8
s1, [x12]1, #8

s0, s0, si

s1, [x11], #8

s0, s0, si

s0, [x14]1, #8

.LBBO_2

w4, #0, .LBBO_5
x8, x8, #2, #32

s0, [x0, x8
s1, [x1, x8
s2, [x2, x8
s0, s0, si
s0, s0, s2
s0, [x3, x8

]
]
]

]

46/68

Loop Unrolling

4 Single-core CPU Optimizations

Initial code without loop unrolling

void basic_loopl(const float *A,
const float *B,
const float *C,
const int n)

#pragma unroll 2
for (int i = 0; i < m; i++) {
D[i] = A[i] + B[i] + C[il;

1
2
3
4
5 {
6
7
8
9)

10 }

e Compiler: Clang 10.0.0 — Options:

-03 -march=armv8-a+nosimd -funroll-loops

basic_lo

.LBBO_3:

.LBBO_4:

.LBBO_6:

opl:
cmp
b.1lt
cmp
b.ne

add
sub
add
// =>This
ldur
ldur
ldur
add
cmp
fadd
fadd
stur
1ldr
1ldr
fadd
1ldr
fadd
str
b.ne
cbz

1sl
ldr
ldr

#1

#1

#0:
, %0, #4
s x1, #4
N , #4
s x3, #4
Inner Loop
[x10, #-4]
bxi1, #-a]
Lxi2, #-a]
#2
[xia, #-4]
[x10], #8
[x11], #8
[xi2], #8
[xi4], #8
#2
[x0, x8]
[xl, x8]

Header: Depth=1

47/68

Loop Unrolling

4 Single-core CPU Optimizations

Initial code without loop unrolling

-03

void basic_loopl(const float *A,
const float *B,
const float *C,
const int n)

#pragma unroll 2
for (int i = 0; i < mn; i++) {
D[il = A[i] + B[i] + C[il;

xp°

1
2
3
4
5 {
6
7
8
9
10 }

e Compiler: C

e

10.0.0 — Options:

-march@®a+nosimd -funroll-loops %

basic_loopl:

cmp
b.1lt
cmp

b.ne

add

sub

add
Y

wa, #1
.LBBO_7

< ;§§> #4
.LBBO_4: hﬂ. nner Loop Header: Depth=1
q

50, [x10, #-4]
s1, [x11, #-4]

47/68

Unroll & Jam

4 Single-core CPU Optimizations

Code with 1 1l dj
Code with loop unrolling OCe WIEH 00D TITOTIE and Jam

1 for (i =0; i <m; i +=2) {
1 for (i = 0; i <mn; i +=2) { 2 do = A[i + 0] + B[i + 0];
2 D[i + 0] = A[i + 0] + B[i + 0] = C[i + 0]; 3 dil = A[i + 1] + B[i + 1];
3 D[i+ 1] = A[i + 1] + B[i + 1] * C[i + 1]; 4 D[i + 0] =d0 = C[i + 0];
4 } 5 D[i + 1] = d1 * C[i + 1];
6)

e Breaks data dependencies

o We can start calculating a part of D[i+1] (in the variable d1) while D[i+0],
has not yet been completely computed

e This optimization can sometimes be performed by the compiler

o Requires more registers (or memory)

48/68

Variables Rotation
4 Single-core CPU Optimizations

Sliding sum of 3 points : Sliding sum of 3 points with 3"d-order
unrolling and variables rotation:

1 void sum(const float *A, float *B, const int n) {

2 for (int i = 1; i < mn; i++) {

3 B[i] = A[i - 1] + A[i + 0] + A[i + 1]; void sum_u3_rot(const float *A, float *B, const int n) {
A D float a0 = A[0];

5 ¥ float al = A[1];

float a3 = A[3];
for (int i = 1; i < mn; i += 3) {

// only one read into A

1
2
3
4 float a2 = A[2];
5
Sliding sum of 3 points with 3*d-order ;
8

unrolling: float a4 = A[i + 41;
9 B[i + 0] = a0 + al + a2;
10 B[i + 1] = al + a2 + a3;
1 void sum_u3(const float *A, float *B, const int n) { 11 B[i + 2] = a2 + a3 + a4;
2 for (int i = 1; i < mn; i += 3) { 12 // rotation on a0, al, a2 and a3 variables
3 B[i + 0] = A[i - 1] + A[i + 0] + A[i + 1]; 13 a0 = at;
4 Bli + 1] = A[Qi + 0] + A[i + 1] + A[i + 2]; 14 al = a2
5 B[i + 2] = A[i + 1] + A[i + 2] + A[i + 3]; 15 a2 = a3;
6 X 16 a3 = a4;
7 // pas d'épilogue pour simplifier 17 }
8 } 18 }

49/68

W N WN R

sum_u3:

.LBBO_2:

cmp w2, #3
b.1t .LBB0O_3
sub wil0, w2, #1
add x8, x0, #8
add x9, x1, #8
sxtw x10, w10
mov wil, #1
// =>This Inner Loop Header: Depth=1
1dp s0, s1, [x8, #-8] // <= 2 loads
1ldr s2, [x8] // <=1 load
add x11, x11, #3
cmp X
fadd s1
fadd s2
stur #-4]
1dp s0, si, [x8, #-4] // <= 2 loads
ldr s2, [x8, #4] // <=1 load
fadd
fadd
str
1dp // <= 2 loads
fadd
ldr // <=1 load
add x8, x8, #12
fadd s0, o @il
str s0, [x9, #4]
add x9, x9, #12
b.1t .LBBO_2
ret

W N WN R

sum_u3_rot:

.LBBO_2:

.LBBO_3:

cmp
b.1lt
1dp
1dp
sub
mov
sxtw
add

w2, #3

.LBB0_3

s0, s3, [x0, #8]
s2, s1, [x0]

w9, w2, #1

x8, xzr

x9, w9

x10, x0, #20

// =>This Inner Loop Header: Depth=1

add
cmp
1sl
fmov
fmov
ldr
fadd
fadd
fadd
add
fadd
stp
fadd
fadd
add
str
fmov
fmov
b.1t

ret

x11, x8, #4

x11, x9

x11, x8, #2

s4, sO // <= register rotation
s0, s3 // <= register rotation

s3, [x10, x11] // <= 1 load
s sl, s2

s4
5 8

, 52
x11, x1, x11
s6, sb, sO

s2, sb, [x11, #4]
s2, s4, sO
s2, s2, s3
x8, x8, #3

s2, [x11, #12]

s2, sl // <= register rotation
s1, s4 // <= register rotation
.LBBO_2

50/68

1
2
3
4
5
6
7
8
9

10
11
12

void sum_u3_rot(const float *A, float *B, const int
float a0 = A[0], a1l = A[1], a2 = A[2], a3 = A[3];
for (int i = 1; i < n; i += 3) {
// only one read into A
float a4 = A[i + 4];
B[i + 0] = a0 + al + a2; // 2 additions
B[i + 1] = al + a2 + a3; // 2 additions
Bli + 2] = a2 + a3 + a4; // 2 additions
// rotation on a0, al, a2 and a3 wvariables
a0 = al; al = a2 a2 = a3; a3 = a4;
¥
}

e This code compute 6 additions,
we compute less?

— Yes! Let us use a reduction!

n) {

can

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

void sum_u3_rot_red(const float *A, float *B, const int

{

float a0 =
// sums s0,
float s0 =
float s1 =
for (int i

// only one read into A

float a4

A

al
a

// compute

float s2
B[i + 0]
B[i + 1]
Bli + 2]

Variables Rotation & Reduction

4 Single-core CPU Optimizations

[01, a1 = A[1], a2 = A[2], a3 = A[3];

s1, s2 = reductions

0 + al + a2;
1 + a2 + a3;
1; i < n; i

Al + 4];

+=3) {

only 2 additions
a2 + a3 + a4d;

s0;
s1;
E25

// rotation on a0, al,
a0 = al; al = a2; a2 =
// rotation on the sO,
s0 = sl1; s1 = s2;

a2, a3 and a4 variables
a3; a3 = a4;
sl, s2 wariables

51/68

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

void sum_u3_rot_red(const float *A, float *B, const int n)

{

float a0 = A[0], al = A[1], a2 = A[2], a3 = A[3];
// sums s0, s1, s2 = reductions
float sO = a0 + al + a2;
float s1 = al + a2 + a3;
for (int i = 1; i < n; i += 3) {
// only one read into 4

float a4 = A[i + 4];

// compute

Rot. & Red — Asm

4 Single-core CPU Optimizations

only 2 additions

float s2 = a2 + a3 + a4;
B[i + 0] = s0;
B[i + 1] = si1;
B[i + 2] = s2;

// rotation on a0, a

a0
Z
s0

A

otation on the s

sl; s1 = s2;

, a2,
al; al = a2; a2 = a3;

1 sum_u3_rot_red:

2 cmp , #3

3 b.1lt

4 1dp 5 , [x0, #4]

5 1ldr , [x0, #12]

6 ldr , [x01, #20

7 sub 5 , #1

8 fadd o o

9 mov N

10 fadd , s3,

11 fadd 5 5

12 fadd , s2,

13 sxtw N

14 .LBBO_2: // =>This Inner Loop Header: Depth=1
15 add 6 , #4

16 cmp 5

17 1sl 6 , #2

18 fadd . . // <= 1 addition
19 fmov 5 // <= reg * rotation
20 ldr , [x0,]

21 add , x1,

22 stp 5 , [, #4]

23 fmov s // <= register rotation
24 fadd » s4, // <= 1 addition
25 add , x8, #3

26 str , [, #12]

27 b.1t

28 .LBBO_3:

29 ret

52/68

Loop Fusion

4 Single-core CPU Optimizations

Two independent loops: Merging the two loops into one:
1 for (int i = 0; i < n; i++) 1 for (int i = 0; i < n; i++) {

2 D[i] = A[i] + B[il; 2 D[i] = A[i] + B[il;

3 for (int i = 0; i < n; i++) 3 E[i] = A[i] * C[il;

4 E[i] = A[i] * C[il; 4 }

e This improves data reuse

o In the example, the second reading of A[i] (line 2) will necessarily be in the
caches & Temporal locality

53/68

Loop Splitting

4 Single-core CPU Optimizations

e Split a loop in multiple loops

e The reverse operation of loop fusion

o For special reasons (ex.: multi-threading)

o Simplifies or eliminates a dependency by cutting the loop into two parts

e Sometimes pressure on the registers makes it more interesting to have separate
loops

54/68

Conditional Branching Instructions

4 Single-core CPU Optimizations

Conditional Branching Instructions (e.g. if, switch, etc) create bubbles in
the processor pipeline

The pipeline cannot operate at full efficiency

As far as possible, we should therefore avoid these instructions in the hotspot
of the code
— However, if the branch is mispredicted, we need to wait the pipeline latency (&
15 cycles)

55/68

Conditional Branching Instructions — Example
4 Single-core CPU Optimizations

Example of bad code on the left and better code on the right:

1 for (int i = 0; i < n; i++) {
2 if (4 >=1 & i <n - 1) {
3 switch (i % 4) {) . . .
=1 < = qla =
4 case 0: B[i] = A[i] * 0.3333f; 4 G -y s g e)
! ! 2> B[i+ 0] = A[i + 0] + 1.3333f;
5 case 1: B[i] = A[i] + 1.3333f; . .
. . 3 B[i + 1] = A[i + 1] - 0.7555f;
6 case 2: B[i] = A[i] - 0.7555f; . .
7 case 3: B[il = A[il = 1.1111f; o BlR e 2l = R s o)) o i ie
8 default: break; 5 BLi+ 3] =Ali + 3] * 0.3333f;
6 }
9 }
10 }
11}

o if (line 2) can be removed by modifying the start and end of the loop

o switch (line 3) can be avoided by unrolling the loop at the 4" order

56/68

Memory Accesses

4 Single-core CPU Optimizations

¢ When code is limited by memory throughput, you have to be very careful
about how we access the data

e Memory bandwidth is a major limiting factor in modern architectures

— There are mechanisms to reduce this problem: use of pre-fetching instructions

— Memory is accessed by line of words (one word = 32-bit)

— It’s interesting to access data that follow one another (spatial locality)

— Reduce the number of RAM accesses and favor cache accesses (temporal
locality)

57/68

Example of Memory Accesses — Part 1

4 Single-core CPU Optimizations

1 for (int i = 0; i < n; i++) // column
2 for (int j = 0; j < mn; j++) // row
3 Clj * n + il = A[j * n + i] + B[j * n + il;

data in RAM
data in cache

. access in RAM

Logical and hardware view of memory accesses (12-word cache & 4-word cache line)

58/68

Example of Memory Accesses — Part 1

4 Single-core CPU Optimizations

1 for (int i = 0; i < n; i++) // column
2 for (int j = 0; j < mn; j++) // row
3 Clj * n + il = A[j * n + i] + B[j * n + il;

. data in RAM

data in cache

. access in RAM

Logical and hardware view of memory accesses (12-word cache & 4-word cache line)

58/68

Example of Memory Accesses — Part 1

4 Single-core CPU Optimizations

1 for (int i = 0; i < n; i++) // column
2 for (int j = 0; j < mn; j++) // row
3 Clj * n + il = A[j * n + i] + B[j * n + il;

data in RAM

. data in cache

. access in RAM

Logical and hardware view of memory accesses (12-word cache & 4-word cache line)

58/68

Example of Memory Accesses — Part 1

4 Single-core CPU Optimizations

1 for (int i = 0; i < n; i++) // column
2 for (int j = 0; j < mn; j++) // row
3 Clj * n + il = A[j * n + i] + B[j * n + il;

data in RAM

data in cache

j . . access in RAM

Logical and hardware view of memory accesses (12-word cache & 4-word cache line)

58/68

Example of Memory Accesses — Part 1

4 Single-core CPU Optimizations

1 for (int i = 0; i < n; i++) // column
2 for (int j = 0; j < mn; j++) // row
3 Clj * n + il = A[j * n + i] + B[j * n + il;

data in RAM
data in cache
j . access in RAM
]

Logical and hardware view of memory accesses (12-word cache & 4-word cache line)

58/68

Example of Memory Accesses — Part 1

4 Single-core CPU Optimizations

1 for (int i = 0; i < n; i++) // column
2 for (int j = 0; j < mn; j++) // row
3 Clj * n + il = A[j * n + i] + B[j * n + il;

B data in RAM

data in cache

. access in RAM

Logical and hardware view of memory accesses (12-word cache & 4-word cache line)

58/68

Example of Memory Accesses — Part 1

4 Single-core CPU Optimizations

1 for (int i = 0; i < n; i++) // column
2 for (int j = 0; j < mn; j++) // row
3 Clj * n + il = A[j * n + i] + B[j * n + il;

data in RAM

. data in cache

. access in RAM

Logical and hardware view of memory accesses (12-word cache & 4-word cache line)

58/68

Example of Memory Accesses — Part 2

4 Single-core CPU Optimizations

data in RAM

. data in cache

[l access in RaM

Logical and hardware view of memory accesses (12-word cache & 4-word cache line)

o In this implementation, data accesses are not contiguous in memory

o There is a stride of 4 words between each access (not good for spatial locality)

59/68

Example of Memory Accesses — Part 3

4 Single-core CPU Optimizations

1 for (int j = 0; j < n; j++) // row
2 for (int i = 0; i < n; i++) // column
3 Clj * n + i] = A[j * n + il + B[j * n + il;

data in RAM
data in cache

. access in RAM

Logical and hardware view of memory accesses (12-word cache & 4-word cache line)

60/68

Example of Memory Accesses — Part 3

4 Single-core CPU Optimizations

1 for (int j = 0; j < n; j++) // row
2 for (int i = 0; i < n; i++) // column
3 Clj * n + i] = A[j * n + il + B[j * n + il;

B data in RAM

data in cache

. access in RAM

Logical and hardware view of memory accesses (12-word cache & 4-word cache line)

60/68

Example of Memory Accesses — Part 3

4 Single-core CPU Optimizations

1 for (int j = 0; j < n; j++) // row
2 for (int i = 0; i < n; i++) // column
3 Clj * n + i] = A[j * n + il + B[j * n + il;

O data in RAM

data in cache

. access in RAM

]

Logical and hardware view of memory accesses (12-word cache & 4-word cache line)

60/68

Example of Memory Accesses — Part 3

4 Single-core CPU Optimizations

1 for (int j = 0; j < n; j++) // row

2 for (int i = 0; i < n; i++) // column

3 Clj * n + i] = A[j * n + il + B[j * n + il;
i

O data in RAM

data in cache

. access in RAM

]

Logical and hardware view of memory accesses (12-word cache & 4-word cache line)

60/68

Example of Memory Accesses — Part 3

4 Single-core CPU Optimizations

1 for (int j = 0; j < n; j++) // row
2 for (int i = 0; i < n; i++) // column
3 Clj * n + i] = A[j * n + il + B[j * n + il;

O data in RAM

data in cache

. access in RAM

]

Logical and hardware view of memory accesses (12-word cache & 4-word cache line)

60/68

Example of Memory Accesses — Part 3

4 Single-core CPU Optimizations

1 for (int j = 0; j < n; j++) // row
2 for (int i = 0; i < n; i++) // column
3 Clj * n + i] = A[j * n + il + B[j * n + il;

data in RAM

. data in cache

. access in RAM

Logical and hardware view of memory accesses (12-word cache & 4-word cache line)

60/68

Example of Memory Accesses — Part 3

4 Single-core CPU Optimizations

1 for (int j = 0; j < n; j++) // row
2 for (int i = 0; i < n; i++) // column
3 Clj * n + i] = A[j * n + il + B[j * n + il;

data in RAM

I:' data in cache

. access in RAM

]

Logical and hardware view of memory accesses (12-word cache & 4-word cache line)

60/68

Example of Memory Accesses — Part 4

4 Single-core CPU Optimizations

data in RAM

D data in cache

. access in RAM

Logical and hardware view of memory accesses

e In this implementation, accesses are contiguous in memory
— Cache lines are fully used
— Memory throughput is maximized

e i-loop and j-loop have simply been switched
61/68

Cache Blocking

4 Single-core CPU Optimizations

o In many cases, data can be reused (spatial locality)

e Let us take the example of a stencil code operating on a 2D grid

1 for (int j = 1; j < rows - 1; j++) // row

2 for (int i = 1; i < cols - 1; i++) // column

3 B[j * cols + il = A[(j) * cols + (i-1)] + A[(j) * cols + (i+1)] + // left, right
4 A[(G) * cols + (i)] + // center

5 A[(j-1) * cols + (i)] + A[(j+1) * cols + (i)]; // top, bottom

62/68

WITHOUT Cache Blocking — Part 1

4 Single-core CPU Optimizations

1 for (int j = 1; j < rows - 1; j++) // row

2 for (int i = 1; i < cols - 1; i++) // column

3 B[j * cols + i] = A[(j) * cols + (i-1)] + A[(j) * cols + (i+1)] + // left, right
4 A[(j) * cols + (1)] + // center

5 A[(j-1) * cols + (i)] + A[(j+1) * cols + (i)]; // top, bottom

....... data in RAM
B N . . boundary data
a . . . | datain cache
. - access in cache
. . access in RAM
EEEEEEN

Logical view of the 2D grid

63/68

WITHOUT Cache Blocking — Part 1

4 Single-core CPU Optimizations

1 for (int j = 1; j < rows - 1; j++) // row

2 for (int i = 1; i < cols - 1; i++) // column

3 B[j * cols + i] = A[(j) * cols + (i-1)] + A[(j) * cols + (i+1)] + // left, right
4 A[(j) * cols + (1)] + // center

5 A[(j-1) * cols + (i)] + A[(j+1) * cols + (i)]; // top, bottom

. data in RAM
. - . . . boundary data
J . - . - . . . | datain cache
. . . . - . . . access in cache
. - . . . access in RAM
EEEEEEEEER

Logical view of the 2D grid
63/68

WITHOUT Cache Blocking — Part 1

4 Single-core CPU Optimizations

1 for (int j = 1; j < rows - 1; j++) // row

2 for (int i = 1; i < cols - 1; i++) // column

3 B[j * cols + i] = A[(j) * cols + (i-1)] + A[(j) * cols + (i+1)] + // left, right
4 A[(j) * cols + (1)] + // center

5 A[(j-1) * cols + (i)] + A[(j+1) * cols + (i)]; // top, bottom

EEEEEEEEER data in RAM
[| [0 ¥ boundary data
i . . - . . | datain cache
. - . . . | . . access in cache
. - access in RAM
EEEEEEEEER

Logical view of the 2D grid
63/68

WITHOUT Cache Blocking — Part 1

4 Single-core CPU Optimizations

1 for (int j = 1; j < rows - 1; j++) // row

2 for (int i = 1; i < cols - 1; i++) // column

3 B[j * cols + i] = A[(j) * cols + (i-1)] + A[(j) * cols + (i+1)] + // left, right
4 A[(j) * cols + (1)] + // center

5 A[(j-1) * cols + (i)] + A[(j+1) * cols + (i)]; // top, bottom

EEEEEEEENER data in RAM

[| [[voundary data
i .iiii. 7. | datain cache
. - access in cache
.iiii. . .accessinRAM
EEEEEEEEER

Logical view of the 2D grid
63/68

WITHOUT Cache Blocking — Part 2

4 Single-core CPU Optimizations

...... data in RAM
. . boundary data

. . . data in cache
. . access in cache
. . access in RAM

Logical 2D grid memory view

e For each increment of i there are 3 new RAM accesses and 2 cache accesses
(we neglect cache lines)

e Can we reduce the number of RAM accesses?
— Yes, using a so-called cache blocking technique (also called tiling in the literature)

— The idea is to modify the data path to maximize reuses 64/68

Cache Blocking — Part 1

4 Single-core CPU Optimizations

EEEERN
EEEEN
AN ENEN
NEEAE-
LB
EEEERN

data in RAM
. boundary data
| datain cache
. access in cache

. access in RAM

Logical 2D grid memory view

65/68

Cache Blocking — Part 1

4 Single-core CPU Optimizations

EEEERN
ENEER
fyEENEEN
ErEEA
L]
EEEERN

data in RAM
. boundary data
| datain cache
. access in cache

. access in RAM

Logical 2D grid memory view

65/68

Cache Blocking

4 Single-core CPU Optimizations

EEEERN
[HE
yEEERE
EREEN
EEENERE
EEEERN

— Part 1
EEEER
[|
[[
H [|
[|
EEEER

data in RAM
. boundary data
| datain cache
. access in cache

. access in RAM

Logical 2D grid memory view

65/68

Cache Blocking — Part 1

4 Single-core CPU Optimizations

.......... data in RAM

. . . boundary data
i data in cache

. access in cache

. . . HE . . access in RAM

Logical 2D grid memory view

65/68

Cache Blocking — Part 1

4 Single-core CPU Optimizations

.......... data in RAM

. . . boundary data
i, M HEEBR [| dataincache

. access in cache

EEEE™ B [sccessinram

Logical 2D grid memory view

65/68

Cache Blocking — Part 2

4 Single-core CPU Optimizations

EEEEEEEREER data in RAM
H [[voundary data
i data in cache
EEEEEE B[sccessincacne
. . . - . . . access in RAM
EEEEEEEEER

Logical 2D grid memory view

e Cache blocking reduces the number of RAM accesses

— On average, only one RAM access per point remains!
— We have divided the grid into several blocks (here 2), vertical blocks

66/68

Cache Blocking — Blocks Size

4 Single-core CPU Optimizations

e The block size depends on the problem and on the CPU architecture
o For the previous stencil code, the size of a block can be defined as follows:

sizeO fCache
2 x 3 x sizeO fData’

with sizeO fCache the size of the L3 cache in bytes and sizeO f Data the size of
the data (single precision = 4 bytes, double precision = 8 bytes).

blockSize =

o We divide by 2 because caches generally work better when half is used
(grandma’s recipe...)

e We divide by 3 because we need to keep 3 lines cached in our stencil

o Note that if blockSize > cols then the cache blocking technique is useless

67/68

il
2
3
4
5
6
7
8
9

o
= o

Cache Blocking — Implementation

4 Single-core CPU Optimizations

EEEEEEEEER data in RAM

[| B W voundary data
iy | (] | data in cache

FEEE [[accessincache

[|] [[accessinram

#define SIZE_OF CACHE_L3 96 // we suppose a L3 cache of 96 bytes for the exzample
int blockSize = SIZE_OF_CACHE_L3 / (2 * 3 x sizeof(float)); // (96 / 24) = /4
for (int iOff = 1; i0ff < cols - 1; iOff += blockSize) { // loop over wertical blocks
blockSize = min(cols - 1 - iOff, blockSize); // reduce the block size if needed
for (int j = 1; j < rows - 1; j++) // row
for (int i = i0ff; i < i0ff + blockSize; i++) // column
B[j * cols + il = A[(j) * cols + (i - 1)1 + A[L(j) * cols + (i + 1)] +
AL() * cols + (i) +
A[(j - 1) * cols + (i)1 + A[(j + 1) * cols + (i)1;
}

68/68

QLA

Thank you for listening!
Do you have any questions?

	Introduction
	Programmable Architectures
	Single-core CPU Architecture
	Single-core CPU Optimizations

