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Presentation
1 Introduction

• 6 ECTS, 11 sessions of 4 hours:
— 6 sessions of classroom lectures (6 × 2h)
— 6 sessions of hands-on works (6 × 2h)
— 4 sessions of a project (4 × 4h)
— 1 session for the presentations (1 × 4h)

• Main objectives:
— Understand modern general purpose

processor architectures (CPU & GPU)
— Program efficiently the CPUs and GPUs
— Learn the theory to upper-bound the

expected performance benefit

• Take away:
1. CPU programming

◦ Scalar optimizations
◦ SIMD instructions
◦ Multi-threading

2. GPU programming
◦ Concepts
◦ OpenCL language

3. Performance analysis
◦ Speedup
◦ Efficiency
◦ Roofline model

• Sessions in English
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Prerequisites
1 Introduction

• Strong basis in C programming
— Pointers
— Structures
— Compilation and Makefile
— ...

• Few basis in C++ programming
— Standard Template Library
— Ex.: std::vector<T>
— Templating over the data types

• Some knowledge about computers
architecture

— Central Unit Processor (CPU)
— RAM, Caches, Bus
— Main principles of assembly prog.

• Some knowledge about Linux OS
— Command line
— Memory pagination and space
— Unix processes and threads
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Target Parallel & Embedded Architecture
1 Introduction

• NVIDIA Jetson TX2 development kit
— CPU: 6 cores
— GPU: 256 cores
— RAM: 8 GB shared between CPU & GPU
— Embedded in cars, satellites, video game

consoles (Switch), medical equipment, ...
• 15 available boards (max. 2 students per board)
• Hands-on and project sessions on the same target!
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Application Framework
1 Introduction

• Hands-on sessions with
EasyPAP framework

• C and C++ languages
• Visualization of the

results
• Monitoring of the

performance
• Focus on what really

matters
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Mysterious Project
1 Introduction

• Surprise!
• Choose ProgPar to find out

more...

• Oh but you already chose ProgPar,
be patient you will see later ;-)
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Simplified CPU architecture – Part 1
2 Programmable Architectures

• Compute units and memory
— Memory is used to load and store data
— Compute units are used to transform data

add mul

sub div

Processor

Memory

Random Acces Memory (RAM)

load

store
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Simplified CPU architecture – Part 2
2 Programmable Architectures

• More precisely, in a CPU there are:
— Control units (if, goto, instructions placement, ...)
— Logic units, LU (==, ! =, >, <, ...)
— Arithmetic units, AU (+, ∗, −, /, ...)

control

LU AU

Processor

memory

Random Acces Memory (RAM)

load

store
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CPU Architecture: Cycle, Freq. and
Throughput
2 Programmable Architectures

• A tick of the clock = a cycle

• In each cycle, the CPU performs an elementary task

• Frequency = number of cycles per second (in Hertz)

• Modern CPU/RAM frequency: between 1 GHz and 4 GHz (1 GHz = 109 Hz)

• Memory throughput (RAM) ≈ 50 GB/s (DDR5)
• CPU capable of consuming/producing data at ≈ 5 TB/s (i9-9900K)

— The CPU is much faster (×100) !
— How can we solve this problem?
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CPU Architecture: Memory Hierarchy – Part 1
2 Programmable Architectures

Observation: most applications often reuse the same data

• Faster memory between CPU and RAM = Cache memory
— Faster memory is more expensive and takes up physical space
— This memory (= cache) is much smaller than RAM
— 3 levels of cache (in the processor):

◦ L1, the fastest and smallest (32 KB), access time ≈ 2 cycles
◦ L2, slower than L1 but larger (1 MB), access time ≈ 10 cycles
◦ L3, slower than L2 but larger (4 MB), access time ≈ 30 cycles

— RAM access latency ≈ 100 cycles
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CPU Architecture: Memory Hierarchy – Part 2
2 Programmable Architectures

• Scenario: first load of a data from memory

control

LU AU

L1
L2

L3

Processor

memory

Random Acces Memory (RAM)

load

data

Loading data from RAM: ≈ 100 cycles
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L1
L2

L3
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load
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CPU Architecture: Memory Hierarchy – Part 3
2 Programmable Architectures

• Scenario: load the same data (= second load) from memory

control

LU AU

L1
L2

L3

Processor

memory

Random Acces Memory (RAM)

load

data

Loading data from L1 cache: 1-2 cycles
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CPU Architecture: Memory Hierarchy – Part 4
2 Programmable Architectures

• Scenario: store data to memory

• Two possible modes:
— Write-through

◦ “Possibly simpler” to implement in hardware
◦ Write to both RAM and cache
◦ Choice made in some embedded architectures

— Write-back
◦ “More complicated” to implement in hardware (cache coherence protocol)
◦ Write to cache and write to RAM only if data is invalidated from smaller/faster cache
◦ Writing to RAM less often = consuming less energy
◦ The choice made by the majority of architectures (computer, HPC, embedded)
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CPU Architecture: Spatial Locality
2 Programmable Architectures

• One cache line = a certain amount of data (e.g. 128–512 bits)

• The smallest packet of data moving between RAM and CPU is a cache line

• It’s more interesting to access data contiguously!

• Otherwise, part of the data coming from RAM will be unused (= loss of
bandwidth).

• Using data in the same cache line is called spatial locality!
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CPU Architecture: SIMD instructions
2 Programmable Architectures

• Scalar instruction: produces data during 1 cycle

ra + rb = rc

• SIMD instruction: produces n data during 1 cycle

r0
a + r0

b
= r0

c

r1
a + r1

b
= r1

c

r2
a + r2

b
= r2

c

r2
a + r3

b
= r3

c

ra rb rcSIMD

• SIMD instructions operate on so-called “vector registers”.
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CPU Architecture: Multi-core
2 Programmable Architectures

• Modern CPUs are now all multi-core
• Generally, L1 and L2 caches are

dedicated to a single core.
• Cores share the Last Level Cache

(LLC) or L3

control

LU AU

L1
L2

Core 0

control

LU AU

L1
L2

Core 1

L3 Cache or Last Level Cache (LLC)

control

LU AU

L1
L2

Core 2

control

LU AU

L1
L2

Core 3

Multi-core processor
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Co-processors
2 Programmable Architectures

• Hardware physically separated from the
CPU (or not on today’s SoCs...).

• Often connected to the CPU via the
PCI-Express bus

• Has its own RAM (global memory) (but not
always...)

• Examples of co-processors
— Graphics Processing Unit (GPU)
— Field-Programmable Gate Array (FPGA)
— Many Integrated Cores (MIC)

Processor memory (RAM)

Compute units global memory

Co-processors

Bus (UPI)

Fast bus

Bus (PCI-Express)
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GPU Architecture
2 Programmable Architectures

• Originally designed for image processing

• Massively parallel architecture

• Fewer control units than CPUs, but more compute units

• Global memory faster than CPU RAM (≈ 500 GB/s)

• Performance/power consumption ratio generally better than CPUs

• Often suitable for scientific computing

• Hardware acceleration units for AI (tensor cores)
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GPU Architecture: Nvidia Ampere
2 Programmable Architectures
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Supercomputer architecture
2 Programmable Architectures

CPU

GPU

mem

network

Node 0

CPU

GPU

mem

network

Node 1

CPU

GPU

mem

network

Node 2

CPU

GPU

mem

network

Node 3

CPU

GPU

mem

network

Node 4

CPU

GPU

mem

network

Node 5

CPU

GPU

mem

network

Node 6

CPU

GPU

mem

network

Node 7

Switch

• A very simplistic supercomputer
• Interconnecting computers with a star network (switch)
• Theoretical maximum performance is 8 times that of a node
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Pipeless Processor
3 Single-core CPU Architecture

• Generally, an instruction can be divided into several sub-steps:
1. Fetch (IF) : the instruction is copied from memory
2. Decode (ID) : the instruction is interpreted by the CPU
3. Execute (EX) : the instruction is executed

• On a processor WITHOUT pipeline, this corresponds to:

IF 1 ID 1 EX 1 IF 2 ID 2 EX 2

Cycle 1 Cycle 2

Time

• Cycle 1 and cycle 2 take 6 units of time to complete
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Pipelined Processor – Part 1
3 Single-core CPU Architecture

• From what we’ve just seen, it’s possible to divide an instruction into 3
sub-instructions (µop)

• We assume that each sub-instruction takes the same amount of time
• On a pipelined processor, this corresponds to:

Time

IF 1 ID 1 EX 1

IF 2 ID 2 EX 2

IF 3 ID 3 EX 3

Cycle 1

Cycle 2

Cycle 3

• Cycle 1, cycle 2 and cycle 3 take 5 units of time to complete
• 3-stage pipeline (IF, ID and EX can run in parallel)

21/68



Pipelined Processor – Part 2
3 Single-core CPU Architecture

• It takes some time before the pipeline is optimal
— This is called pipeline latency (2 cycles here)

• If latency is not taken into account, a 3-stage pipeline is 3 times faster

• Yellow: the time point at which the pipeline is optimal

Time

IF 1 ID 1 EX 1

IF 2 ID 2 EX 2

IF 3 ID 3 EX 3

Cycle 1

Cycle 2

Cycle 3
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Pipelined Processor – Part 3
3 Single-core CPU Architecture

• Today’s processors have pipelines of 10 to 20 stages, but the principle remains
the same

• There is a mechanism so that the preceding instruction can directly pass its
result to the following instruction (register latch + forwarding)

• Pipeline seems effective, but what happens if you have conditions (e.g. if)?
— In this case, it’s problematic: the processor can’t know what the next instruction

will be, which is bad to pipeline efficiency (it creates “bubbles”).
— There are branch prediction mechanisms to limit this effect...
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Super-scalar Processor
3 Single-core CPU Architecture

• The ability of a processor to execute
several instructions in parallel

— Instruction Level Parallelism (ILP)
— Processors are generally 3- to 10-wide

super-scalar

• This means that a CPU is capable of
executing more than one instruction per
cycle (3 to 10 instructions)

— The example on the right shows a
processor with an ILP of 2 and a 3-stage
pipeline

— For instance, a processor can compute 1
multiplication and load data from
memory in 1 cycle Time

IF 1 ID 1 EX 1

IF 2 ID 2 EX 2

IF 3 ID 3 EX 3

Cycle 1

Cycle 2

Cycle 3

IF 4 ID 4 EX 4

IF 5 ID 5 EX 5

IF 6 ID 6 EX 6

Cycle 1

Cycle 2

Cycle 3
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Out-of-Order (OoO) Execution
3 Single-core CPU Architecture

• Most processors are now capable of executing instructions out of order
(different order than the one given by the assembler code)

— This maximizes the use of CPU units during a cycle (e.g. super-scalar processor).
— It is difficult to predict the order in which the processor will execute instructions

• Here’s a code example to illustrate:
1 int a = 1, b = 2, c = 3, d = 4, e = 5, f = 6, g = 7, h = 8;
2 c = a + b; // 1st instruction to be executed, it depends on nothing
3 e = c * d; // 3rd instruction to be executed, it depends on 'c'
4 h = f * g; // 2nd instruction to be executed, it depends on nothing
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Apple Silicon M1 Micro-architecture (2020)
3 Single-core CPU Architecture
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Intel Alder Lake Micro-architecture (2021)
3 Single-core CPU Architecture
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Intel Alder Lake Micro-architecture (2021)
3 Single-core CPU Architecture
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Intel Alder Lake Micro-architecture (2021)
3 Single-core CPU Architecture
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What About our New Toy?
3 Single-core CPU Architecture

• Nvidia Jetson TX2 development kit
— 2× very powerful Nvidia “Denver 2” cores @ 2.04 GHz

◦ Specific for performance applications

— 4× powerful ARM “Cortex A57” (Big) cores @ 2.04 GHz
◦ Generally used in smartphones

— Weird heterogeneous design
◦ Classic ARM architectures combine A57 (Big) with A53 (LITTLE)

— No energy efficient cores (LITTLE)
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Cortex A57 (2015)
3 Single-core CPU Architecture

• 18-stage pipeline
• 3-way decoder
• 8-wide super-scalar (µops)
• Out-of-order execution
• Source: Anandtech
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Nvidia Denver 2 (2016)
3 Single-core CPU Architecture

• 15-stage pipeline
• 2-way decoder
• 7-wide super-scalar (µops)
• In-order execution

— ARM code is translated
by a hardware translator

— Can be considered as
out-of-order...

• Sources:
— wccftech
— WikiChip
— Wikipedia
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https://wccftech.com/nvidias-64bit-denver-cpu-architecture-details-unveiled-dual-custom-armv8-cores-clocked-250-ghz/
https://en.wikichip.org/wiki/nvidia/microarchitectures/denver
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Nvidia Jetson TX2: Cores and Caches Topology
3 Single-core CPU Architecture

of RAM

2048

64

128

64

128

(4x Cortex A57) (2x Denver 2)

Topology from hwloc-ls
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Working with the Compiler
4 Single-core CPU Optimizations

• Compilers come with a number of options that allow you to optimize your
program automatically, thus reducing execution time

• In this course, we’ll be using the GNU C/C++ compiler (gcc, g++) or Clang
(clang, clang++), but similar options are available in other compilers

• It’s important to understand the optimizations that can and cannot be made
by the compiler!

— This maximizes the readability of the source code while maintaining efficiency
— This allows the compiler to apply some “dirty” optimizations on our behalf when

generating the binary code
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Compiler: Optimization Options
4 Single-core CPU Optimizations

• The most famous are (-O[level]) :
-O0 no optimization
-O1 enables a series of optimizations to reduce binary size and execution time, while

keeping compilation time relatively low
-O2 enables all possible optimizations (except those requiring a compromise between

efficiency and binary size), this option requires a longer compilation time than
-O1

-O3 optimizes even further, enables the following options: -finline-functions,
-funswitch-loops, -fpredictive-commoning, -fgcse-after-reload,
-ftree-loop-vectorize, -ftree-loop-distribute-patterns,
-ftree-slp-vectorize, -fvect-cost-model, -ftree-partial-pre and
-fipa-cp-clone

• Source: https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
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Compilateur : quelques options spécifiques
4 Single-core CPU Optimizations

• -finline-functions: enables automatic inlining, the compiler can choose
whether or not to inline (this option is not a guarantee)

• -ftree-vectorize: enables automatic code vectorization

• -ffast-math: does not take IEEE 754 specifications into account in float
calculations (risk of loss of precision = risk of bugs)

• -funroll-loops: unrolls loops whose bounds are known at compile time.
This option makes the binary code larger, and does not necessarily improve
execution time

• -march=native: enables instructions specific to the micro-architecture on
which the compiler is running, often necessary for code vectorization
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Instruction Latency and Throughput
4 Single-core CPU Optimizations

• Here are the costs of the main arithmetic instructions on the Intel Skylake
micro-architecture

— add: latency of 4 cycles, throughput of 0.5 cycles per instruction (CPI)
— sub: latency of 4 cycles, throughput of 0.5 cycles per instruction (CPI)
— mul: latency of 4 cycles, throughput of 0.5 cycles per instruction (CPI)
— div: latency of 14 cycles, throughput of 4 cycles per instruction (CPI)
— Source: Intel Intrinsics Guide

• For add, sub and mul, the CPU can achieve 2 instructions per cycle!

• As you can see, division is much less efficient than multiplication (throughput
8 times lower)

— It is therefore interesting to compute the inverse and then multiply by the inverse
— Be careful, however, as this operation leads to a loss of precision in the

computations
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Division Example
4 Single-core CPU Optimizations

1 int div1(const float *A, float *B, const int n) {
2 for (int i = 0; i < n; i++)
3 B[i] = A[i] / 3.f;
4 }

• Number of theoretical cycles: n × 4

1 int div2(const float *A, float *B, const int n) {
2 float inv3 = 1.f / 3.f;
3 for (int i = 0; i < n; i++)
4 B[i] = A[i] * inv3;
5 }

• Number of theoretical cycles: 4 + n × 0.5
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Division Example – Assembly Code
4 Single-core CPU Optimizations

• Compiler: Clang 10.0.0 – Options: -O1 -march=armv8-a+nosimd

1 div1:
2 cmp w2, #1
3 b.lt .LBB0_3
4 mov w8, w2
5 fmov s0, #3.00000000
6 .LBB0_2: // =>This Inner Loop Header: D=1
7 ldr s1, [x0], #4
8 subs x8, x8, #1
9 fdiv s1, s1, s0

10 str s1, [x1], #4
11 b.ne .LBB0_2
12 .LBB0_3:
13 ret

1 div2:
2 cmp w2, #1
3 b.lt .LBB0_3
4 mov w9, #43691
5 mov w8, w2
6 movk w9, #16042, lsl #16
7 .LBB0_2: // =>This Inner Loop Header: D=1
8 ldr s0, [x0], #4
9 fmov s1, w9

10 subs x8, x8, #1
11 fmul s0, s0, s1
12 str s0, [x1], #4
13 b.ne .LBB0_2
14 .LBB0_3:
15 ret
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Special Functions
4 Single-core CPU Optimizations

• Here are the costs of some common mathematical functions (Intel Skylake):
— sqrt: latency of 12 cycles, throughput of 3 CPI
— rsqrt: latency of 4 cycles, throughput of 1 CPI
— pow, cos, sin, tan: very expensive, depends on software implementation, no

dedicated hardware unit
— Source: Intel Intrinsics Guide

• rsqrt has a throughput of one instruction per cycle!
— Surprisingly, this function is implemented in hardware
— Accuracy is generally lower than for other instructions
— Widely used for 2D/3D distance calculations

• pow, cos, sin and tan are very expensive, we must try to limit their use in
our codes

— Approximate functions are often available at lower cost
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Function Calls
4 Single-core CPU Optimizations

• A function call comes with an additional cost (passing parameters through
registers and/or the stack, jump instructions)

• Does this mean we shouldn’t make function calls?
— Sometimes it’s better to avoid
— It depends on where the function call is located

1 void stencil_1d_core(const float *A, float *B, const int i) {
2 B[i] = A[i - 1] + A[i ] + A[i + 1];
3 }
4

5 void stencil_1d(const float *A, float *B, const int size) {
6 for (int i = 1; i < size -1; i++)
7 stencil_1d_core(A, B, i); // ici on appelle la fonction très souvent
8 }
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Inlining
4 Single-core CPU Optimizations

• Inlining a function means replacing the function call with the function code
itself

— This eliminates the extra cost of calling the function

• You can do it manually, but it’s not a good idea...

• It’s a better idea to have the compiler do it!
— Use of the keyword inline in the C/C++ language
— Compiler optimization option (-finline-function)
— In the code before the function declaration: __attribute__((inline))

42/68



1 stencil_1d_core:
2 sbfiz x8, x2, #2, #32
3 add x9, x0, x8
4 ldp s0, s1, [x9, #-4]
5 ldr s2, [x9, #4]
6 fadd s0, s0, s1
7 fadd s0, s0, s2
8 str s0, [x1, x8]
9 ret

10 stencil_1d:
11 stp x29, x30, [sp, #-48]!
12 stp x22, x21, [sp, #16]
13 stp x20, x19, [sp, #32]
14 mov x29, sp
15 cmp w2, #3
16 b.lt .LBB1_3
17 mov w19, w2
18 mov x20, x1
19 mov x21, x0
20 mov w22, #2
21 .LBB1_2: // =>This Inner Loop Header: D=1
22 sub w2, w22, #1
23 mov x0, x21
24 mov x1, x20
25 bl stencil_1d_core
26 add w22, w22, #1
27 cmp w19, w22
28 b.ne .LBB1_2
29 .LBB1_3:
30 ldp x20, x19, [sp, #32]
31 ldp x22, x21, [sp, #16]
32 ldp x29, x30, [sp], #48
33 ret

1 stencil_1d_core:
2 sbfiz x8, x2, #2, #32
3 add x9, x0, x8
4 ldp s0, s1, [x9, #-4]
5 ldr s2, [x9, #4]
6 fadd s0, s0, s1
7 fadd s0, s0, s2
8 str s0, [x1, x8]
9 ret

10 stencil_1d:
11 cmp w2, #3
12 b.lt .LBB1_3
13 sub w10, w2, #1
14 add x8, x0, #8
15 add x9, x1, #4
16 sub x10, x10, #1
17 .LBB1_2: // =>This Inner Loop Header: D=1
18 ldp s0, s1, [x8, #-8]
19 ldr s2, [x8], #4
20 subs x10, x10, #1
21 fadd s0, s0, s1
22 fadd s0, s0, s2
23 str s0, [x9], #4
24 b.ne .LBB1_2
25 .LBB1_3:
26 ret

• Compiler: Clang 10.0.0 – Options:
-O2 -march=armv8-a+nosimd
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Loop Unrolling
4 Single-core CPU Optimizations

• Loop unwinding consists in increasing the loop pitch and adapting the loop
body to the loop pitch

• Can sometimes be performed by the compiler (but not always...)

• Several benefits
— Reduces time spent in loop control
— Reduces the risk of branch prediction error
— Increases optimization opportunities, potentially exposes more parallelism for

ILP, masks instruction latency

• Some drawbacks
— Reduces code readability and increases the risk of bugs (not good for

maintainability)
— An epilogue (code after the loop) is often required
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Loop Unrolling – Example
4 Single-core CPU Optimizations

Initial code without loop unrolling

1 void basic_loop1(const float *A,
2 const float *B,
3 const float *C,
4 const int n)
5 {
6 for (int i = 0; i < n; i++) {
7 D[i] = A[i] + B[i] + C[i];
8 }
9 }

Code with 2nd-order loop unrolling
1 void basic_loop2(const float *A,
2 const float *B,
3 const float *C,
4 const int n)
5 {
6 for (i = 0; i < n; i += 2) {
7 D[i + 0] = A[i + 0] + B[i + 0] + C[i + 0];
8 D[i + 1] = A[i + 1] + B[i + 1] + C[i + 1];
9 }

10 }

• If we assume that n value is 3, then the code with unrolling is wrong!

• We nee to add an epilogue L10-11
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Loop Unrolling – Example
4 Single-core CPU Optimizations

Initial code without loop unrolling

1 void basic_loop1(const float *A,
2 const float *B,
3 const float *C,
4 const int n)
5 {
6 for (int i = 0; i < n; i++) {
7 D[i] = A[i] + B[i] + C[i];
8 }
9 }

Code with 2nd-order loop unrolling
1 void basic_loop2(const float *A,
2 const float *B,
3 const float *C,
4 const int n)
5 {
6 for (i = 0; i < (n * 2) / 2 ; i += 2) {
7 D[i + 0] = A[i + 0] + B[i + 0] + C[i + 0];
8 D[i + 1] = A[i + 1] + B[i + 1] + C[i + 1];
9 }

10 if (n % 2)
11 D[n - 1] = A[n - 1] + B[n - 1] + C[n - 1];
12 }

• If we assume that n value is 3, then the code with unrolling is wrong!
• We nee to add an epilogue L10-11
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1 basic_loop1:
2 cmp w4, #1
3 b.lt .LBB0_3
4 mov w8, w4
5 .LBB0_2: // =>This Inner Loop Header: Depth=1
6 ldr s0, [x0], #4
7 ldr s1, [x1], #4
8 ldr s2, [x2], #4
9 subs x8, x8, #1

10 fadd s0, s0, s1
11 fadd s0, s0, s2
12 str s0, [x3], #4
13 b.ne .LBB0_2
14 .LBB0_3:
15 ret

• Compiler: Clang 10.0.0 – Options:
-O3 -march=armv8-a+nosimd -funroll-loops

• By default, the compiler does not
unroll the code even with
-funroll-loops

1 basic_loop2:
2 subs w8, w4, #1
3 b.lt .LBB0_3
4 mov x9, xzr
5 mov w10, w4
6 add x11, x2, #4
7 add x12, x1, #4
8 add x13, x0, #4
9 add x14, x3, #4

10 .LBB0_2: // =>This Inner Loop Header: Depth=1
11 ldur s0, [x13, #-4]
12 ldur s1, [x12, #-4]
13 ldur s2, [x11, #-4]
14 add x9, x9, #2
15 cmp x9, x10
16 fadd s0, s0, s1
17 fadd s0, s0, s2
18 stur s0, [x14, #-4]
19 ldr s0, [x13], #8
20 ldr s1, [x12], #8
21 fadd s0, s0, s1
22 ldr s1, [x11], #8
23 fadd s0, s0, s1
24 str s0, [x14], #8
25 b.lo .LBB0_2
26 .LBB0_3:
27 tbz w4, #0, .LBB0_5
28 sbfiz x8, x8, #2, #32
29 ldr s0, [x0, x8]
30 ldr s1, [x1, x8]
31 ldr s2, [x2, x8]
32 fadd s0, s0, s1
33 fadd s0, s0, s2
34 str s0, [x3, x8]
35 .LBB0_5:
36 ret 46/68



Loop Unrolling
4 Single-core CPU Optimizations

Initial code without loop unrolling

1 void basic_loop1(const float *A,
2 const float *B,
3 const float *C,
4 const int n)
5 {
6 #pragma unroll 2
7 for (int i = 0; i < n; i++) {
8 D[i] = A[i] + B[i] + C[i];
9 }

10 }

• Compiler: Clang 10.0.0 – Options:
-O3 -march=armv8-a+nosimd -funroll-loops

1 basic_loop1:
2 cmp w4, #1
3 b.lt .LBB0_7
4 cmp w4, #1
5 b.ne .LBB0_3
6 mov x8, xzr
7 b .LBB0_6
8 .LBB0_3:
9 and w9, w4, #0x1

10 mov x8, xzr
11 add x10, x0, #4
12 add x11, x1, #4
13 add x12, x2, #4
14 sub w13, w4, w9
15 add x14, x3, #4
16 .LBB0_4: // =>This Inner Loop Header: Depth=1
17 ldur s0, [x10, #-4]
18 ldur s1, [x11, #-4]
19 ldur s2, [x12, #-4]
20 add x8, x8, #2
21 cmp w13, w8
22 fadd s0, s0, s1
23 fadd s0, s0, s2
24 stur s0, [x14, #-4]
25 ldr s0, [x10], #8
26 ldr s1, [x11], #8
27 fadd s0, s0, s1
28 ldr s1, [x12], #8
29 fadd s0, s0, s1
30 str s0, [x14], #8
31 b.ne .LBB0_4
32 cbz w9, .LBB0_7
33 .LBB0_6:
34 lsl x8, x8, #2
35 ldr s0, [x0, x8]
36 ldr s1, [x1, x8]
37 ldr s2, [x2, x8]
38 fadd s0, s0, s1
39 fadd s0, s0, s2
40 str s0, [x3, x8]
41 .LBB0_7:
42 ret
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4 Single-core CPU Optimizations

Initial code without loop unrolling

1 void basic_loop1(const float *A,
2 const float *B,
3 const float *C,
4 const int n)
5 {
6 #pragma unroll 2
7 for (int i = 0; i < n; i++) {
8 D[i] = A[i] + B[i] + C[i];
9 }

10 }

• Compiler: Clang 10.0.0 – Options:
-O3 -march=armv8-a+nosimd -funroll-loops

1 basic_loop1:
2 cmp w4, #1
3 b.lt .LBB0_7
4 cmp w4, #1
5 b.ne .LBB0_3
6 mov x8, xzr
7 b .LBB0_6
8 .LBB0_3:
9 and w9, w4, #0x1

10 mov x8, xzr
11 add x10, x0, #4
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14 sub w13, w4, w9
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29 fadd s0, s0, s1
30 str s0, [x14], #8
31 b.ne .LBB0_4
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33 .LBB0_6:
34 lsl x8, x8, #2
35 ldr s0, [x0, x8]
36 ldr s1, [x1, x8]
37 ldr s2, [x2, x8]
38 fadd s0, s0, s1
39 fadd s0, s0, s2
40 str s0, [x3, x8]
41 .LBB0_7:
42 ret
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Unroll & Jam
4 Single-core CPU Optimizations

Code with loop unrolling

1 for (i = 0; i < n; i += 2) {
2 D[i + 0] = A[i + 0] + B[i + 0] * C[i + 0];
3 D[i + 1] = A[i + 1] + B[i + 1] * C[i + 1];
4 }

Code with loop unrolling and jam

1 for (i = 0; i < n; i += 2) {
2 d0 = A[i + 0] + B[i + 0];
3 d1 = A[i + 1] + B[i + 1];
4 D[i + 0] = d0 * C[i + 0];
5 D[i + 1] = d1 * C[i + 1];
6 }

• Breaks data dependencies

• We can start calculating a part of D[i+1] (in the variable d1) while D[i+0],
has not yet been completely computed

• This optimization can sometimes be performed by the compiler

• Requires more registers (or memory)
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Variables Rotation
4 Single-core CPU Optimizations

Sliding sum of 3 points :

1 void sum(const float *A, float *B, const int n) {
2 for (int i = 1; i < n; i++) {
3 B[i] = A[i - 1] + A[i + 0] + A[i + 1];
4 }
5 }

Sliding sum of 3 points with 3rd-order
unrolling:

1 void sum_u3(const float *A, float *B, const int n) {
2 for (int i = 1; i < n; i += 3) {
3 B[i + 0] = A[i - 1] + A[i + 0] + A[i + 1];
4 B[i + 1] = A[i + 0] + A[i + 1] + A[i + 2];
5 B[i + 2] = A[i + 1] + A[i + 2] + A[i + 3];
6 }
7 // pas d'épilogue pour simplifier
8 }

Sliding sum of 3 points with 3rd-order
unrolling and variables rotation:

1 void sum_u3_rot(const float *A, float *B, const int n) {
2 float a0 = A[0];
3 float a1 = A[1];
4 float a2 = A[2];
5 float a3 = A[3];
6 for (int i = 1; i < n; i += 3) {
7 // only one read into A
8 float a4 = A[i + 4];
9 B[i + 0] = a0 + a1 + a2;

10 B[i + 1] = a1 + a2 + a3;
11 B[i + 2] = a2 + a3 + a4;
12 // rotation on a0, a1, a2 and a3 variables
13 a0 = a1;
14 a1 = a2
15 a2 = a3;
16 a3 = a4;
17 }
18 }
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1 sum_u3:
2 cmp w2, #3
3 b.lt .LBB0_3
4 sub w10, w2, #1
5 add x8, x0, #8
6 add x9, x1, #8
7 sxtw x10, w10
8 mov w11, #1
9 .LBB0_2: // =>This Inner Loop Header: Depth=1

10 ldp s0, s1, [x8, #-8] // <= 2 loads
11 ldr s2, [x8] // <= 1 load
12 add x11, x11, #3
13 cmp x11, x10
14 fadd s0, s0, s1
15 fadd s0, s0, s2
16 stur s0, [x9, #-4]
17 ldp s0, s1, [x8, #-4] // <= 2 loads
18 ldr s2, [x8, #4] // <= 1 load
19 fadd s0, s0, s1
20 fadd s0, s0, s2
21 str s0, [x9]
22 ldp s0, s1, [x8] // <= 2 loads
23 fadd s0, s0, s1
24 ldr s1, [x8, #8] // <= 1 load
25 add x8, x8, #12
26 fadd s0, s0, s1
27 str s0, [x9, #4]
28 add x9, x9, #12
29 b.lt .LBB0_2
30 .LBB0_3:
31 ret

1 sum_u3_rot:
2 cmp w2, #3
3 b.lt .LBB0_3
4 ldp s0, s3, [x0, #8]
5 ldp s2, s1, [x0]
6 sub w9, w2, #1
7 mov x8, xzr
8 sxtw x9, w9
9 add x10, x0, #20

10 .LBB0_2: // =>This Inner Loop Header: Depth=1
11 add x11, x8, #4
12 cmp x11, x9
13 lsl x11, x8, #2
14 fmov s4, s0 // <= register rotation
15 fmov s0, s3 // <= register rotation
16 ldr s3, [x10, x11] // <= 1 load
17 fadd s2, s1, s2
18 fadd s5, s1, s4
19 fadd s2, s4, s2
20 add x11, x1, x11
21 fadd s5, s5, s0
22 stp s2, s5, [x11, #4]
23 fadd s2, s4, s0
24 fadd s2, s2, s3
25 add x8, x8, #3
26 str s2, [x11, #12]
27 fmov s2, s1 // <= register rotation
28 fmov s1, s4 // <= register rotation
29 b.lt .LBB0_2
30 .LBB0_3:
31 ret
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Variables Rotation & Reduction
4 Single-core CPU Optimizations

1 void sum_u3_rot(const float *A, float *B, const int n) {
2 float a0 = A[0], a1 = A[1], a2 = A[2], a3 = A[3];
3 for (int i = 1; i < n; i += 3) {
4 // only one read into A
5 float a4 = A[i + 4];
6 B[i + 0] = a0 + a1 + a2; // 2 additions
7 B[i + 1] = a1 + a2 + a3; // 2 additions
8 B[i + 2] = a2 + a3 + a4; // 2 additions
9 // rotation on a0, a1, a2 and a3 variables

10 a0 = a1; a1 = a2 a2 = a3; a3 = a4;
11 }
12 }

• This code compute 6 additions, can
we compute less?

— Yes! Let us use a reduction!

1 void sum_u3_rot_red(const float *A, float *B, const int n)
2 {
3 float a0 = A[0], a1 = A[1], a2 = A[2], a3 = A[3];
4 // sums s0, s1, s2 = reductions
5 float s0 = a0 + a1 + a2;
6 float s1 = a1 + a2 + a3;
7 for (int i = 1; i < n; i += 3) {
8 // only one read into A
9 float a4 = A[i + 4];

10 // compute only 2 additions
11 float s2 = a2 + a3 + a4;
12 B[i + 0] = s0;
13 B[i + 1] = s1;
14 B[i + 2] = s2;
15 // rotation on a0, a1, a2, a3 and a4 variables
16 a0 = a1; a1 = a2; a2 = a3; a3 = a4;
17 // rotation on the s0, s1, s2 variables
18 s0 = s1; s1 = s2;
19 }
20 }
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Rot. & Red – Asm
4 Single-core CPU Optimizations

1 void sum_u3_rot_red(const float *A, float *B, const int n)
2 {
3 float a0 = A[0], a1 = A[1], a2 = A[2], a3 = A[3];
4 // sums s0, s1, s2 = reductions
5 float s0 = a0 + a1 + a2;
6 float s1 = a1 + a2 + a3;
7 for (int i = 1; i < n; i += 3) {
8 // only one read into A
9 float a4 = A[i + 4];

10 // compute only 2 additions
11 float s2 = a2 + a3 + a4;
12 B[i + 0] = s0;
13 B[i + 1] = s1;
14 B[i + 2] = s2;
15 // rotation on a0, a1, a2, a3 and a4 variables
16 a0 = a1; a1 = a2; a2 = a3; a3 = a4;
17 // rotation on the s0, s1, s2 variables
18 s0 = s1; s1 = s2;
19 }
20 }

1 sum_u3_rot_red:
2 cmp w2, #3
3 b.lt .LBB0_3
4 ldp s2, s0, [x0, #4]
5 ldr s1, [x0, #12]
6 ldr s3, [x0], #20
7 sub w9, w2, #1
8 fadd s4, s2, s0
9 mov x8, xzr

10 fadd s2, s3, s2
11 fadd s3, s4, s1
12 fadd s2, s2, s0
13 sxtw x9, w9
14 .LBB0_2: // =>This Inner Loop Header: Depth=1
15 add x10, x8, #4
16 cmp x10, x9
17 lsl x10, x8, #2
18 fadd s4, s1, s0 // <= 1 addition
19 fmov s0, s1 // <= register rotation
20 ldr s1, [x0, x10]
21 add x10, x1, x10
22 stp s2, s3, [x10, #4]
23 fmov s2, s3 // <= register rotation
24 fadd s3, s4, s1 // <= 1 addition
25 add x8, x8, #3
26 str s3, [x10, #12]
27 b.lt .LBB0_2
28 .LBB0_3:
29 ret
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Loop Fusion
4 Single-core CPU Optimizations

Two independent loops:

1 for (int i = 0; i < n; i++)
2 D[i] = A[i] + B[i];
3 for (int i = 0; i < n; i++)
4 E[i] = A[i] * C[i];

Merging the two loops into one:

1 for (int i = 0; i < n; i++) {
2 D[i] = A[i] + B[i];
3 E[i] = A[i] * C[i];
4 }

• This improves data reuse

• In the example, the second reading of A[i] (line 2) will necessarily be in the
caches : Temporal locality
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Loop Splitting
4 Single-core CPU Optimizations

• Split a loop in multiple loops

• The reverse operation of loop fusion

• For special reasons (ex.: multi-threading)

• Simplifies or eliminates a dependency by cutting the loop into two parts

• Sometimes pressure on the registers makes it more interesting to have separate
loops
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Conditional Branching Instructions
4 Single-core CPU Optimizations

• Conditional Branching Instructions (e.g. if, switch, etc) create bubbles in
the processor pipeline

• The pipeline cannot operate at full efficiency

• As far as possible, we should therefore avoid these instructions in the hotspot
of the code

— However, if the branch is mispredicted, we need to wait the pipeline latency (≈
15 cycles)
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Conditional Branching Instructions – Example
4 Single-core CPU Optimizations

Example of bad code on the left and better code on the right:

1 for (int i = 0; i < n; i++) {
2 if (i >= 1 && i < n - 1) {
3 switch (i % 4) {
4 case 0: B[i] = A[i] * 0.3333f;
5 case 1: B[i] = A[i] + 1.3333f;
6 case 2: B[i] = A[i] - 0.7555f;
7 case 3: B[i] = A[i] * 1.1111f;
8 default: break;
9 }

10 }
11 }

1 for (int i = 1; i < n - 1; i += 4) {
2 B[i + 0] = A[i + 0] + 1.3333f;
3 B[i + 1] = A[i + 1] - 0.7555f;
4 B[i + 2] = A[i + 2] * 1.1111f;
5 B[i + 3] = A[i + 3] * 0.3333f;
6 }

• if (line 2) can be removed by modifying the start and end of the loop

• switch (line 3) can be avoided by unrolling the loop at the 4th order
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Memory Accesses
4 Single-core CPU Optimizations

• When code is limited by memory throughput, you have to be very careful
about how we access the data

• Memory bandwidth is a major limiting factor in modern architectures
— There are mechanisms to reduce this problem: use of pre-fetching instructions
— Memory is accessed by line of words (one word = 32-bit)
— It’s interesting to access data that follow one another (spatial locality)
— Reduce the number of RAM accesses and favor cache accesses (temporal

locality)
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Example of Memory Accesses – Part 1
4 Single-core CPU Optimizations

1 for (int i = 0; i < n; i++) // column
2 for (int j = 0; j < n; j++) // row
3 C[j * n + i] = A[j * n + i] + B[j * n + i];

i

j

data in RAM

data in cache

access in RAM

Logical and hardware view of memory accesses (12-word cache & 4-word cache line)
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Example of Memory Accesses – Part 2
4 Single-core CPU Optimizations

i

j

data in RAM

data in cache

access in RAM

Logical and hardware view of memory accesses (12-word cache & 4-word cache line)

• In this implementation, data accesses are not contiguous in memory

• There is a stride of 4 words between each access (not good for spatial locality)
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Example of Memory Accesses – Part 3
4 Single-core CPU Optimizations

1 for (int j = 0; j < n; j++) // row
2 for (int i = 0; i < n; i++) // column
3 C[j * n + i] = A[j * n + i] + B[j * n + i];

i

j

data in RAM

data in cache

access in RAM

Logical and hardware view of memory accesses (12-word cache & 4-word cache line)
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Logical and hardware view of memory accesses (12-word cache & 4-word cache line)
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Example of Memory Accesses – Part 4
4 Single-core CPU Optimizations

i

j

data in RAM

data in cache

access in RAM

Logical and hardware view of memory accesses

• In this implementation, accesses are contiguous in memory
— Cache lines are fully used
— Memory throughput is maximized

• i-loop and j-loop have simply been switched
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Cache Blocking
4 Single-core CPU Optimizations

• In many cases, data can be reused (spatial locality)

• Let us take the example of a stencil code operating on a 2D grid

1 for (int j = 1; j < rows - 1; j++) // row
2 for (int i = 1; i < cols - 1; i++) // column
3 B[j * cols + i] = A[(j ) * cols + (i-1)] + A[(j ) * cols + (i+1)] + // left, right
4 A[(j ) * cols + (i )] + // center
5 A[(j-1) * cols + (i )] + A[(j+1) * cols + (i )]; // top, bottom
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WITHOUT Cache Blocking – Part 1
4 Single-core CPU Optimizations

1 for (int j = 1; j < rows - 1; j++) // row
2 for (int i = 1; i < cols - 1; i++) // column
3 B[j * cols + i] = A[(j ) * cols + (i-1)] + A[(j ) * cols + (i+1)] + // left, right
4 A[(j ) * cols + (i )] + // center
5 A[(j-1) * cols + (i )] + A[(j+1) * cols + (i )]; // top, bottom

i

j

data in RAM

boundary data

data in cache

access in cache

access in RAM

Logical view of the 2D grid
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WITHOUT Cache Blocking – Part 2
4 Single-core CPU Optimizations

i

j

data in RAM

boundary data

data in cache

access in cache

access in RAM

Logical 2D grid memory view

• For each increment of i there are 3 new RAM accesses and 2 cache accesses
(we neglect cache lines)

• Can we reduce the number of RAM accesses?
— Yes, using a so-called cache blocking technique (also called tiling in the literature)
— The idea is to modify the data path to maximize reuses
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Cache Blocking – Part 1
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i

j
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boundary data

data in cache

access in cache

access in RAM

Logical 2D grid memory view
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Cache Blocking – Part 2
4 Single-core CPU Optimizations

i

j

data in RAM

boundary data

data in cache

access in cache

access in RAM

Logical 2D grid memory view

• Cache blocking reduces the number of RAM accesses
— On average, only one RAM access per point remains!
— We have divided the grid into several blocks (here 2), vertical blocks
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Cache Blocking – Blocks Size
4 Single-core CPU Optimizations

• The block size depends on the problem and on the CPU architecture
• For the previous stencil code, the size of a block can be defined as follows:

blockSize = sizeOfCache

2 × 3 × sizeOfData
,

with sizeOfCache the size of the L3 cache in bytes and sizeOfData the size of
the data (single precision = 4 bytes, double precision = 8 bytes).

• We divide by 2 because caches generally work better when half is used
(grandma’s recipe...)

• We divide by 3 because we need to keep 3 lines cached in our stencil
• Note that if blockSize ≥ cols then the cache blocking technique is useless
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Cache Blocking – Implementation
4 Single-core CPU Optimizations

i

j

data in RAM

boundary data

data in cache

access in cache

access in RAM

1 #define SIZE_OF_CACHE_L3 96 // we suppose a L3 cache of 96 bytes for the example
2 int blockSize = SIZE_OF_CACHE_L3 / (2 * 3 * sizeof(float)); // (96 / 24) = 4
3

4 for (int iOff = 1; iOff < cols - 1; iOff += blockSize) { // loop over vertical blocks
5 blockSize = min(cols - 1 - iOff, blockSize); // reduce the block size if needed
6 for (int j = 1; j < rows - 1; j++) // row
7 for (int i = iOff; i < iOff + blockSize; i++) // column
8 B[j * cols + i] = A[(j ) * cols + (i - 1)] + A[(j ) * cols + (i + 1)] +
9 A[(j ) * cols + (i )] +

10 A[(j - 1) * cols + (i )] + A[(j + 1) * cols + (i )];
11 }
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Q&A
Thank you for listening!

Do you have any questions?
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